Log in

Dielectric relaxation and dc conductivity on the PVOH-CF3COONH4 polymer system

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In the present paper, the ionic conductivity and the dielectric relaxation properties on the poly(vinyl alcohol)-CF3COONH4 polymer system have been investigated by means of impedance spectroscopy measurements over wide ranges of frequencies and temperatures. The electrolyte samples were prepared by solution casting technique. The temperature dependence of the sample’s conductivity was modeled by Arrhenius and Vogel-Tammann-Fulcher (VTF) equations. The highest conductivity of the electrolyte of 3.41×10 − 3 (Ωcm) − 1 was obtained at 423 K. For these polymer system two relaxation processes are revealed in the frequency range and temperature interval of the measurements. One is the glass transition relaxation (α-relaxation) of the amorphous region at about 353 K and the other is the relaxation associated with the crystalline region at about 423 K. Dielectric relaxation has been studied using the complex electric modulus formalism. It has been observed that the conductivity relaxation in this polymer system is highly non-exponential. From the electric modulus formalism, it is concluded that the electrical relaxation mechanism is independent of temperature for the two relaxation processes, but is dependent on composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mohamed RI (2000) J Phys Chem Solids 61:1357

    Article  CAS  Google Scholar 

  2. Fr-Bing P, Wegener M, Multhaupt RG, Buchsteiner A, Neumann W, Brehmer L (1999) Polymer 40:3413

    Article  Google Scholar 

  3. Scis I, Ezquerra TA, Calleja FJB, Tupureina V, Kalnins M (2000) J Macromol Sci Phys B 39:761

    Article  Google Scholar 

  4. Shofee EE (2001) Eur Polym J 37(8):1677

    Article  Google Scholar 

  5. Abd-kader FH, Gaafer SA, Rizk MS, Kamel NA (1999) J Appl Polym Sci 72:1395

    Article  Google Scholar 

  6. Ubale SK, Adgaonkar CS (2001) Indian J Pure Appl Phys 39:378

    CAS  Google Scholar 

  7. Faria LO, Moreira RL (1999) J Polym Sci Part B Polym Phys 37:2996

    Article  CAS  Google Scholar 

  8. Nagasawa T, Murata Y, Todono K, Kawai R, Kethara KI, Yono S (2000) J Mater Sci 35:3077

    Article  CAS  Google Scholar 

  9. Abd El-kader FH, Osman WH, Ragab HS, Shehap AM, Rizk MS, Basha MAF (2004) J Polym Mater 21:49

    Google Scholar 

  10. Brunelli DD, Atvars TDZ, Joekes I, Barbosa VC (1998) J Appl Polym Sci 69:645

    Article  Google Scholar 

  11. Cholakis CH, Zingg W, Seffon MV (1989) J Biomed Mater Res 23:417

    Article  CAS  Google Scholar 

  12. Garrel DR, Goudrea P, Zhanf LM et al (1991) J Surg Res 51:297

    Article  CAS  Google Scholar 

  13. Every HA, Zhou V, Forsyth M, MacFarlane DR (1998) Electrochim Acta 43:1465

    Article  CAS  Google Scholar 

  14. MacFarlane DR, Zhou F, Forsyth M (1998) Solid State Ion 113–115:193

    Article  Google Scholar 

  15. Rajendran R, Sivakumar M, Subadevi R (2004) Solid State Ion 167:335

    Article  CAS  Google Scholar 

  16. Vargas MA, Vargas RA, Mellander B-E (1999) Electrochim Acta 44:4227

    Article  CAS  Google Scholar 

  17. Vargas RA, Zapata VH, Delgado MI, Palacios I (2004) Solid State Ion 175:729

    Article  CAS  Google Scholar 

  18. Yang C-C (2007) J Membr Sci 288:51

    Article  CAS  Google Scholar 

  19. Yuan C, Zhang X, Wu Q, Gao B (2006) Solid State Ion 177:1237

    Article  CAS  Google Scholar 

  20. Jeon S-K, Jo Y-K, Jo N-J (2006) Electrochim Acta 52:1549

    Article  CAS  Google Scholar 

  21. Mhiri T, Colombian PH (1991) Solid State Ion 44:235

    Article  CAS  Google Scholar 

  22. Park J-H, Choi B-C (2003) Mater Lett 57:2162

    Article  CAS  Google Scholar 

  23. Funke K, Banhatti RD (2004) Solid State Ion 169:1

    Article  CAS  Google Scholar 

  24. Funke K, Banhatti RD (2006) Solid State Ion 177:1551

    Article  CAS  Google Scholar 

  25. Noto VD, Vittadello M (2002) SoliD State Ion 147:309

    Article  Google Scholar 

  26. Kim S, Park HB, Rhim JW, Lee YM (2005) Solid State Ion 176:117

    Article  CAS  Google Scholar 

  27. Di Noto V, Vittadello M, Lavina S, Fauri M, Bizcasso S (2001) J Phys Chem B 105:4584

    Article  CAS  Google Scholar 

  28. Migahed MD, Bakar NA, Abdel-Hamed MI, El-Hanafy O, Nimar M (1996) J Appl Polym Sci 59:655

    Article  CAS  Google Scholar 

  29. Abd El-kader FH, Shehap AM, Abo Ellil MS, Mahmoud KH (2005) J Appl Polym Sci 95:1342

    Article  CAS  Google Scholar 

  30. Hong J, Brittain JO (1981) J Appl Polym Sci 26:2459

    Article  CAS  Google Scholar 

  31. Yianakopoulos G, Vanderchueren J, Niezette J, Thielen A (1990) IEEE Trans Electr Insul 25:693

    Article  CAS  Google Scholar 

  32. Watts DC, Perry EP (1978) Polymer 19:248

    Article  CAS  Google Scholar 

  33. Fox TG, Flory PJ (1948) J Am Chem Soc 70:2784

    Google Scholar 

  34. Fox TG, Flory PJ (1950) J Appl Phys 21:581

    Article  CAS  Google Scholar 

  35. Said GS, Abd El-kader FH, El Naggar MM, Anees BA (2006) Carbohydr Polym 65:253

    Article  CAS  Google Scholar 

  36. Jonscher AK (1983) Dielectric relaxation in solids. Chelsia Dielectric, London

    Google Scholar 

  37. Almond DP, West AR (1983) Nature (Lond.) 306:456

    Article  CAS  Google Scholar 

  38. Macedo PB, Moynihan CT, Bose R (1972) Phys Chem Glasses 13:171

    CAS  Google Scholar 

  39. Moynihan CT, Boesch LP, Bose R (1973) Phys Chem Glasses 14:122

    CAS  Google Scholar 

  40. Elliott SR (1994) J Non-Cryst Solids 170:97

    Article  CAS  Google Scholar 

  41. Dyre JC (1991) J Non-Cryst Solids 153:219

    Article  Google Scholar 

  42. Ngai KL, Moynihan CT (1998) MRS Bull 23:51

    CAS  Google Scholar 

  43. Hodge IM, Ngai KL, Moynihan CT (2005) J Non-Cryst Solids 351:104

    Article  CAS  Google Scholar 

  44. Williams G, Watts DC (1970) Trans Faraday Soc 170(66):80

    Article  Google Scholar 

  45. Williams G, Watts DC (1971) Trans Faraday Soc 67:1323

    Article  CAS  Google Scholar 

  46. Funke K, Banhatti RD (2006) Solid State Ion 177:1551

    Article  CAS  Google Scholar 

  47. Noto VD, Vittadello M (2002) Solid State Ion 147:309

    Article  Google Scholar 

  48. Kim S, Park HB, Rhim JW, Lee YM (2005) Solid State Ion 176:117

    Article  CAS  Google Scholar 

  49. Ngai KL (1994) In: Richert R, Blumen A (eds) Effects of disorder on relaxation processes. Springer, Berlin

    Google Scholar 

  50. Itoh T, Hamaguchi Y, Uno T, Kubo M, Aihara Y, Sonai A (2006) Solid State Ion 177:185

    Article  CAS  Google Scholar 

  51. Roberts GE, White EFT (1973) In: Howard RN (ed) Physics of glassy polymers. Applied Science, London, p 179

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Castillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castillo, J., Chacón, M., Castillo, R. et al. Dielectric relaxation and dc conductivity on the PVOH-CF3COONH4 polymer system. Ionics 15, 537–544 (2009). https://doi.org/10.1007/s11581-009-0320-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-009-0320-x

Keywords

Navigation