Log in

Deep source transfer learning for the estimation of internal brain dynamics using scalp EEG

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Electroencephalography (EEG) provides high temporal resolution neural data for brain-computer interfacing via noninvasive electrophysiological recording. Estimating the internal brain activity by means of source imaging techniques can further improve the spatial resolution of EEG and enhance the reliability of neural decoding and brain-computer interaction. In this work, we propose a novel EEG data-driven source imaging scheme for precise and efficient estimation of macroscale spatiotemporal brain dynamics across thalamus and cortical regions with deep learning methods. A deep source imaging framework with a convolutional-recurrent neural network is designed to estimate the internal brain dynamics from high-density EEG recordings. Moreover, a brain model including 210 cortical regions and 16 thalamic nuclei is established based on human brain connectome to provide synthetic training data, which manifests intrinsic characteristics of underlying brain dynamics in spontaneous, stimulation-evoked, and pathological states. Transfer learning algorithm is further applied to the trained network to reduce the dynamical differences between synthetic and realistic EEG. Extensive experiments exhibit that the proposed deep-learning method can accurately estimate the spatial and temporal activity of brain sources and achieves superior performance compared to the state-of-the-art approaches. Moreover, the EEG data-driven source imaging framework is effective in the location of seizure onset zone in epilepsy and reconstruction of dynamical thalamocortical interactions during sensory processing of acupuncture stimulation, implying its applicability in brain-computer interfacing for neuroscience research and clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Data availability

The data that support the findings of this study are available on request from the corresponding author.

References

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 62271348).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **g Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, H., Hu, Z., Zhao, Q. et al. Deep source transfer learning for the estimation of internal brain dynamics using scalp EEG. Cogn Neurodyn (2024). https://doi.org/10.1007/s11571-024-10149-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11571-024-10149-2

Keywords

Navigation