Log in

Frequency-dependent effective connections between local signals and the global brain signal during resting-state

  • Brief Communication
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

The psychological and physiological meanings of resting-state global brain signal (GS) and GS topography have been well confirmed. However, the causal relationship between GS and local signals was largely unknown. Based on the Human Connectome Project dataset, we investigated the effective GS topography using the Granger causality (GC) method. In consistent with GS topography, both effective GS topographies from GS to local signals and from local signals to GS showed greater GC values in sensory and motor regions in most frequency bands, suggesting that the unimodal superiority is an intrinsic architecture of GS topography. However, the significant frequency effect for GC values from GS to local signals was primarily located in unimodal regions and dominated at slow 4 frequency band whereas that from local signals to GS was mainly located in transmodal regions and dominated at slow 6 frequency band, consisting with the opinion that the more integrated the function, the lower the frequency. These findings provided valuable insight for the frequency-dependent effective GS topography, improving the understanding of the underlying mechanism of GS topography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Availability of data and material

The original data supporting the results of this research can be downloaded from https://db.humanconnectome.org.

Code availability

The code of this research can be obtained by requesting the corresponding author.

References

  • Alcauter S, Lin W, Smith JK, Goldman BD, Reznick JS, Gilmore JH, Gao W (2015) Frequency of spontaneous BOLD signal shifts during infancy and correlates with cognitive performance. Dev Cogn Neurosci 12:40–50

    Article  PubMed  Google Scholar 

  • Ao Y, Kou J, Yang C, Wang Y, Huang L, **g X, Cui Q, Cai X, Chen J (2022) The temporal dedifferentiation of global brain signal fluctuations during human brain ageing. Sci Rep 12:3616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ao Y, Ouyang Y, Yang C, Wang Y (2021) Global signal topography of the human brain: a novel framework of functional connectivity for psychological and pathological investigations. Front Hum Neurosci 15:644892

    Article  PubMed  PubMed Central  Google Scholar 

  • Buzsáki G (2006) Rhythms of the brain. Oxford University Press, New York

    Book  Google Scholar 

  • Chen Y, Bressler SL, Ding M (2006) Frequency decomposition of conditional Granger causality and application to multivariate neural field potential data. J Neurosci Methods 150:228–237

    Article  PubMed  Google Scholar 

  • Fan L, Li H, Zhuo J, Zhang Y, Wang J, Chen L, Yang Z, Chu C, **e S, Laird AR, Fox PT, Eickhoff SB, Yu C, Jiang T (2016) The human brainnetome atlas: a new brain atlas based on connectional architecture. Cereb Cortex 26(8):3508–3526

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao Z, Dang W, Wang X, Hong X, Hou L, Ma K, Perc M (2021) Complex networks and deep learning for EEG signal analysis. Cogn Neurodyn 15:369–388

    Article  PubMed  Google Scholar 

  • Glasser, M. F., S. N. Sotiropoulos, J. A. Wilson, T. S. Coalson, B. Fischl, J. L. Andersson, J. Xu, S. Jbabdi, M. Webster, J. R. Polimeni, D. C. Van Essen, M. Jenkinson and W. U.-M. H. Consortium (2013) The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 80:105–124

    Article  Google Scholar 

  • Glerean E, Salmi J, Lahnakoski JM, Jaaskelainen IP, Sams M (2012) Functional magnetic resonance imaging phase synchronization as a measure of dynamic functional connectivity. Brain Connect 2(2):91–101

    Article  PubMed  PubMed Central  Google Scholar 

  • Gong Z-Q, Gao P, Jiang C, **ng X-X, Dong H-M, White T, Castellanos FX, Li H-F, Zuo X-N (2021) DREAM: a toolbox to decode rhythms of the brain system. Neuroinformatics 19(3):529–545

    Article  PubMed  PubMed Central  Google Scholar 

  • Granger CWJ (1969) Investigationg causal relations by econometric models and cross-spectral methods. Econometrica 37(3):424–438

    Article  Google Scholar 

  • Gutierrez-Barragan D, Basson MA, Panzeri S, Gozzi A (2019) Infraslow state fluctuations govern spontaneous fMRI network dynamics. Curr Biol 29(14):2295–2306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutierrez-Barragan D, Singh NA, Alvino FG, Coletta L, Rocchi F, Guzman ED, Galbusera A, Uboldi M, Panzeri S, Gozzi A (2022) Unique spatiotemporal fMRI dynamics in the awake mouse brain. Curr Biol 32:1–14

    Article  Google Scholar 

  • Huntenburg JM, Bazin P-L, Margulies DS (2018) Large-scale gradients in human cortical organization. Trends Cogn Sci 22(1):21–31

    Article  PubMed  Google Scholar 

  • Kim J, Criaud M, Cho SS, Díez-Cirarda M, Mihaescu A, Coakeley S, Ghadery C, Valli M, Jacobs MF, Houle S, Strafella AP (2017) Abnormal intrinsic brain functional network dynamics in Parkinson’s disease. Brain 140(11):2955–2967

    Article  PubMed  PubMed Central  Google Scholar 

  • Li J, Bolt T, Bzdok D, Nomi JS, Yeo BTT, Spreng RN, Uddin LQ (2019) Topography and behavioral relevance of the global signal in the human brain. Sci Rep 9:14286

    Article  PubMed  PubMed Central  Google Scholar 

  • Marinazzo D, Pellicoro M, Stramaglia S (2012) Causal information approach to partial conditioning in multivariate data sets. Comput Math Methods Med 2012:303601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitra A, Kraft A, Wright P, Acland B, Snyder AZ, Rosenthal Z, Czerniewski L, Bauer A, Snyder L, Culver J, Lee J-M, Raichle ME (2018) Spontaneous infra-slow brain activity has unique spatiotemporal dynamics and laminar structure. Neuron 98(2):297–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy K, Fox MD (2017) Towards a consensus regarding global signal regression for resting state functional connectivity MRI. Neuroimage 154:169–173

    Article  PubMed  Google Scholar 

  • Musch K, Honey CJ (2018) Causal Evidence for a neural component of spatially global hemodynamic signals. Neuron 97(4):734–736

    Article  CAS  PubMed  Google Scholar 

  • Scalabrini A, Vai B, Poletti S, Damiani S, Mucci C, Colombo C, Zanardi R, Benedetti F, Northoff G (2020) All roads lead to the default-mode network—global source of DMN abnormalities in major depressive disorder. Neuropsychopharmacology 45:2058–2069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song X, Zhang Y, Liu Y (2014) Frequency specificity of regional homogeneity in the resting-state human brain. PLoS ONE 9(1):e86818

    Article  PubMed  PubMed Central  Google Scholar 

  • Turchi J, Chang C, Ye FQ, Russ BE, Yu DK, Cortes CR, Monosov IE, Duyn JH, Leopold DA (2018) The basal forebrain regulates global resting-state fMRI fluctuations. Neuron 97(4):940–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Essen, D. C., S. M. Smith, D. M. Barch, T. E. Behrens, E. Yacoub, K. Ugurbil and W. U.-M. H. Consortium (2013) The WU-Minn Human Connectome Project: an overview. Neuroimage 80:62–79

    Article  Google Scholar 

  • Wang X, Liao W, Han S, Li J, Wang Y, Zhang Y, Zhao J, Chen H (2021) Frequency-specific altered global signal topography in drug-naive first-episode patients with adolescent-onset schizophrenia. Brain Imaging Behav 15(4):1876–1885

    Article  PubMed  Google Scholar 

  • Wang Y-F, Dai G-S, Liu F, Long Z-L, Yan JH, Chen H-F (2015) Steady-state BOLD response to higher-order cognition modulates low frequency neural oscillations. J Cogn Neurosci 27(12):2406–2415

    Article  PubMed  Google Scholar 

  • Wang Y-F, Liu F, Long Z-L, Duan X-J, Cui Q, Yan JH, Chen H-F (2014) Steady-state BOLD response modulates low frequency neural oscillations. Sci Rep 4:7376

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Huang X, Yang X, Yang Q, Wang X, Northoff G, Pang Y, Wang C, Cui Q, Chen H (2019a) Low-frequency phase-locking of brain signals contribute to efficient face recognition. Neuroscience 422:172–183

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zhu L, Zou Q, Cui Q, Liao W, Duan X, Biswal B, Chen H (2018) Frequency dependent hub role of the dorsal and ventral right anterior insula. Neuroimage 165:112–117

    Article  PubMed  Google Scholar 

  • Wang Y, Zou Q, Ao Y, Liu Y, Ouyang Y, Wang X, Biswal B, Cui Q, Chen H (2020) Frequency-dependent circuits anchored in the dorsal and ventral left anterior insula. Sci Rep 10:16394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YF, Wang XQ, Ye LK, Yang Q, Cui Q, He ZL, Li LY, Yang XZ, Zou QJ, Yang P, Liu DF, Chen HF (2019b) Spatial complexity of brain signal is altered in patients with generalized anxiety disorder. J Affect Disord 246:387–393

    Article  PubMed  Google Scholar 

  • Wong CW, Olafsson V, Tal O, Liu TT (2013) The amplitude of the resting-state fMRI global signal is related to EEG vigilance measures. Neuroimage 83:983–990

    Article  PubMed  Google Scholar 

  • Worsley KJ, Marrett S, Neelin P, Vandal AC, Friston KJ, Evans AC (1996) A unified statistical approach for determining significant signals in images of cerebral activation. Hum Brain Mapp 4(1):58–73

    Article  CAS  PubMed  Google Scholar 

  • Wu G-R, Liao W, Stramaglia S, Ding J-R, Chen H, Marinazzo D (2013a) A blind deconvolution approach to recover effective connectivity brain networks from resting state fMRI data. Med Image Anal 17(3):365–374

    Article  PubMed  Google Scholar 

  • Wu G-R, Stramaglia S, Chen H, Liao W, Marinazzo D (2013b) Map** the voxel-wise effective connectome in resting state fMRI. PLoS ONE 8(9):e73670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan C-G, Zang Y-F (2010) DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Front Syst Neurosci 4:13

    Google Scholar 

  • Yang Y, Cui Q, Pang Y, Chen Y, Tang Q, Guo X, Han S, Fateh AA, Lu F, He Z, Huang J, **e A, Li D, Lei T, Wang Y, Chen H (2021) Frequency-specific alteration of functional connectivity density in bipolar disorder depression. Progress Neuropsychopharmacol Biol Psychiatry 104:110026

    Article  CAS  Google Scholar 

  • Zhang H, Zhang L, Zang Y (2015) Fluctuation amplitude and local synchronization of brain activity in the ultra-low frequency band: an fMRI investigation of continuous feedback of finger force. Brain Res 1629:104–112

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Magioncalda P, Huang Z, Tan Z, Hu X, Hu Z, Conio B, Amore M, Inglese M, Martino M (2019) Altered global signal topography and its different regional localization in motor cortex and hippocampus in mania and depression. Schizophr Bull 45(4):902–910

    Article  PubMed  Google Scholar 

  • Zhang W, Guo L, Liu D, Xu G (2020) The dynamic properties of a brain network during working memory based on the algorithm of cross-frequency coupling. Cogn Neurodyn 14:215–228

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (62177035, 82172059. 62103377).

Author information

Authors and Affiliations

Authors

Contributions

Y.F.W., M.L.J., Q.C., Y.J.P., X.J.J.: conceptualization; Y.F.W., C.X.Y., G.L., Y.J.A.: formal analysis; Y.F.W., Q.C., Y.J.P.: funding acquisition; Y.F.W., C.X.Y.: original draft; Y.F.W., C.X.Y., G.L., Y.J.A., M.L.J., Q.C., Y.J.P., X.J.J.: review & editing.

Corresponding author

Correspondence to Yifeng Wang.

Ethics declarations

Conflicts of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

The HCP scanning protocol was approved by the local Institutional Review Board at Washington University in St. Louis. Informed consent was obtained from all subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15438 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Yang, C., Li, G. et al. Frequency-dependent effective connections between local signals and the global brain signal during resting-state. Cogn Neurodyn 17, 555–560 (2023). https://doi.org/10.1007/s11571-022-09831-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-022-09831-0

Keywords

Navigation