Log in

The adjustment mechanism of the spike and wave discharges in thalamic neurons: a simulation analysis

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Different from many previous theoretical studies, this paper explores the regulatory mechanism of the spike and wave discharges (SWDs) in the reticular thalamic nucleus (TRN) by a dynamic computational model. We observe that the SWDs appears in the TRN by changing the coupling weights and delays in the thalamocortical circuit. The abundant poly-spikes wave discharges is also induced when the delay increases to large enough. These discharges can be inhibited by tuning the inhibitory output from the basal ganglia to the thalamus. The mechanisms of these waves can be explained in this model together with simulation results, which are different from the mechanisms in the cortex. The TRN is an important target in treating epilepsy, and the results may be a theoretical evidence for experimental study in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arakaki T, Mahon S, Charpier S et al (2016) The role of striatal feedforward inhibition in the maintenance of absence seizures. J Neurosci 36(37):9618–9632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Assenza G, Lanzone J, Dubbioso R et al (2020) Thalamic and cortical hyperexcitability in juvenile myoclonic epilepsy. Clin Neurophysiol 131(8):2041–2046

    Article  PubMed  Google Scholar 

  • Bagshaw AP, Hale JR, Campos BM et al (2017) Sleep onset uncovers thalamic abnormalities in patients with idiopathic generalised epilepsy. Neuro Image Clin 16:52–57

    Google Scholar 

  • Barad Z(2017) Excitatory ionotropic glutamate receptor expression in the reticular thalamic nucleus in a mouse model of absence epilepsy. University of Otago

  • Berman R, Negishi M, Vestal M et al (2010) Simultaneous EEG, fMRI, and behavior in typical childhood absence seizures. Epilepsia 51(10):2011–2022

    Article  PubMed  PubMed Central  Google Scholar 

  • Biraben A, Semah F, Ribeiro MJ et al (2004) PET evidence for a role of the basal ganglia in patients with ring chromosome 20 epilepsy. Neurology 63(1):73–77

    Article  CAS  PubMed  Google Scholar 

  • Bomben VC, Aiba I, Qian J et al (2016) Isolated P/Q calcium channel deletion in layer VI corticothalamic neurons generates absence epilepsy. J Neurosci 36(2):405–418

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouilleret V, Semah F, Chassoux F et al (2008) Basal ganglia involvement in temporal lobe epilepsy: a functional and morphologic study. Neurology 70(3):177–184

    Article  CAS  PubMed  Google Scholar 

  • Breakspear M, Roberts JA, Terry JR et al (2005) A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. Cereb Cortex 16(9):1296–1313

    Article  PubMed  Google Scholar 

  • Chang WJ, Chang WP, Shyu BC (2017) Suppression of cortical seizures by optic stimulation of the reticular thalamus in PV-mhChR2-YFP BAC transgenic mice. Mol Brain 10(1):1–15

    Article  Google Scholar 

  • Chen M, Guo D, Li M et al (2015) Critical roles of the direct GABAergic pallido-cortical pathway in controlling absence seizures. PLoS Comput Biol 11(10):e1004539

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen M, Guo D, Wang T et al (2014) Bidirectional control of absence seizures by the basal ganglia: a computational evidence. PLoS Comput Biol 10(3):e1003495

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen M, Wu S, **a Y et al (2016) Possible critical roles of Globus pallidus externa in controlling absence seizures. Adv Cogn Neurodyn. Springer, Singapore, pp 633–640

    Chapter  Google Scholar 

  • Chiriboga ASL, Siegel JL, Tatum WO et al (2017) Striking basal ganglia imaging abnormalities in LGI1 ab faciobrachial dystonic seizures. Neurol Neuroimmunol 4(3):e336

    Article  Google Scholar 

  • Currie SP, Luz LL, Booker SA et al (2017) Reduced local input to fast-spiking interneurons in the somatosensory cortex in the GABAA \(\gamma\)2 R43Q mouse model of absence epilepsy. Epilepsia 58(4):597–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Da Silva FL, Blanes W, Kalitzin SN et al (2003) Epilepsies as dynamical diseases of brain systems: basic models of the transition between normal and epileptic activity. Epilepsia 44(s12):72–83

    Article  Google Scholar 

  • Dayani MA, Daneshi A, Ahadi R et al (2017) Diagnostic value of magnetic resonance spectroscopy in morphometrical analysis of basal ganglia in patients with idiopathic generalized epilepsy. Res J Pharm Technol 10(8):2693–2696

    Article  Google Scholar 

  • Deeba F, Sanz-Leon P, Robinson PA (2019) Unified dynamics of interictal events and absence seizures. Phys Rev E 100(2):022407

    Article  CAS  PubMed  Google Scholar 

  • Deransart C, Depaulis A (2002) The control of seizures by the basal ganglia? A review of experimental data. Epileptic Disord 4(3):61–72

    Google Scholar 

  • Deransart C, Vercueil L, Marescaux C et al (1998) The role of basal ganglia in the control of generalized absence seizures. Epilepsy Res 32(1):213–223

    Article  CAS  PubMed  Google Scholar 

  • Dervinis M (2016) Pathophysiological mechanisms of absence epilepsy: a computational modelling study. Cardiff University

  • Destexhe A (1999) Can GABAA conductances explain the fast oscillation frequency of absence seizures in rodents? Eur J Neurosci 11(6):2175–2181

    Article  CAS  PubMed  Google Scholar 

  • Destexhe A (1998) Spike-and-wave oscillations based on the properties of GABAB receptors. J Neurosci 18(21):9099–9111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong L, Wang P, Peng R et al (2016) Altered basal ganglia-cortical functional connections in frontal lobe epilepsy: A resting-state fMRI study. Epilepsy Res 128:12–20

    Article  PubMed  Google Scholar 

  • Du T, Chen Y, Shi L et al (2021) Deep brain stimulation of the anterior nuclei of the thalamus relieves basal ganglia dysfunction in monkeys with temporal lobe epilepsy. CNS Neurosci Ther 27(3):341–351

    Article  CAS  PubMed  Google Scholar 

  • Ernst WL, Zhang Y, Yoo JW et al (2009) Genetic enhancement of thalamocortical network activity by elevating \(\alpha\)1G-mediated low-voltage-activated calcium current induces pure absence epilepsy. J Neurosci 29(6):1615–1625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrari A, Renzetti P, Serrati C et al (2017) Serial magnetic resonance study in super refractory status epilepticus: progressive involvement of striatum and pallidus is a possible predictive marker of negative outcome. Neurol Sci 38(8):1513–1516

    Article  PubMed  Google Scholar 

  • Friend DM, Kravitz AV (2014) Working together: basal ganglia pathways in action selection. Trends Neurosci 37(6):301–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerardo CM, Manuel MMV (2020) The thalamic reticular nucleus: a common nucleus of neuropsychiatric diseases and deep brain stimulation. J Clin Neurosci 73:1–7

    Article  CAS  PubMed  Google Scholar 

  • Graybiel AM (2000) The basal ganglia. Curr biol 10(14):R509–R511

    Article  CAS  PubMed  Google Scholar 

  • Guillery RW, Feig SL, Lozsadi DA (1998) Paying attention to the thalamic reticular nucleus. Trends Neurosci 21(1):28–32

    Article  CAS  PubMed  Google Scholar 

  • Gummadavelli A, Motelow JE, Smith N et al (2015) Thalamic stimulation to improve level of consciousness after seizures: evaluation of electrophysiology and behavior. Epilepsia 56(1):114–124

    Article  PubMed  Google Scholar 

  • Hu B, Chen S, Chi H et al (2017) Controlling absence seizures by tuning activation level of the thalamus and striatum. Chaos Solitons Fractals 95:65–76

    Article  Google Scholar 

  • Ikeda H, Adachi K, Fujita S et al (2015) Investigating complex basal ganglia circuitry in the regulation of motor behaviour, with particular focus on orofacial movement. Behav Pharmacol 26(1–2):18–32

    Article  CAS  PubMed  Google Scholar 

  • Johnson K (2016) The basal ganglia. Develop Disord Brain Psychology Press 2:1–14

    Google Scholar 

  • Kim SH, Lim SC, Yang DW et al (2017) Thalamo-cortical network underlying deep brain stimulation of centromedian thalamic nuclei in intractable epilepsy: a multimodal imaging analysis. Neuropsychiatr Dis Treat 13:2607

    Article  PubMed  PubMed Central  Google Scholar 

  • Klinger N, Mittal S (2018) Deep brain stimulation for seizure control in drug-resistant epilepsy. Neurosurg Focus 45(2):E4

    Article  PubMed  Google Scholar 

  • Kohmann D, Lüttjohann A, Seidenbecher T et al (2016) Short-term depression of gap junctional coupling in reticular thalamic neurons of absence epileptic rats. J Physiol 594(19):5695–5710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhlmann L, Grayden DB, Wendling F et al (2015) The role of multiple-scale modelling of epilepsy in seizure forecasting. J Clin Neurophysiol 32(3):220

    Article  PubMed  PubMed Central  Google Scholar 

  • Kurada L, Bayat A, Joshi S et al (2020) Antiepileptic effects of electrical stimulation of the piriform cortex. Exp Neurol 325:113070

    Article  CAS  PubMed  Google Scholar 

  • Luo C, Li Q, **a Y et al (2012) Resting state basal ganglia network in idiopathic generalized epilepsy. Human Brain Mapp 33(6):1279–1294

    Article  Google Scholar 

  • Lytton WW (2008) Computer modelling of epilepsy. Nat Rev Neurosci 9(8):626–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magdaleno-Madrigal VM, ContrerasMu-rillo G, Valdés-Cruz A, et al (2019) Effects of High-and Low-Frequency Stimulation of the Thalamic Reticular Nucleus on Pentylentetrazole-Induced Seizures in Rats. Neuromodul Technol Neural Interface 22(4): 425–434

  • Marten F, Rodrigues S, Benjamin O et al (2009) Onset of polyspike complexes in a mean-field model of human electroencephalography and its application to absence epilepsy. Philos Trans R Soc A 367(1891):1145–1161

    Article  Google Scholar 

  • Martín-López D, Jiménez-Jiménez D, Cabañés-Martínez L et al (2017) The role of thalamus versus cortex in epilepsy: evidence from human ictal centromedian recordings in patients assessed for deep brain stimulation. Int J Neural Syst 27(07):1750010

    Article  PubMed  Google Scholar 

  • Meeren HKM, Pijn JPM, Van Luijtelaar ELJM et al (2002) Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats. J Neurosci 22(4):1480–1495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meeren H, van Luijtelaar G, da Silva FL et al (2005) Evolving concepts on the pathophysiology of absence seizures: the cortical focus theory. Arch Neurol 62(3):371–376

    Article  PubMed  Google Scholar 

  • Middlebrooks EH, Grewal SS, Stead M et al (2018) Differences in functional connectivity profiles as a predictor of response to anterior thalamic nucleus deep brain stimulation for epilepsy: a hypothesis for the mechanism of action and a potential biomarker for outcomes. Neurosurg Focus 45(2):E7

    Article  PubMed  Google Scholar 

  • Nanobashvili Z, Chachua T, Nanobashvili A et al (2003) Suppression of limbic motor seizures by electrical stimulation in thalamic reticular nucleus. Exp Neurol 181(2):224–230

    Article  PubMed  Google Scholar 

  • Pantoja-Jiménez CR, Magdaleno-Madrigal VM, Almazán-Alvarado S et al (2014) Anti-epileptogenic effect of high-frequency stimulation in the thalamic reticular nucleus on PTZ-induced seizures. Brain Stimul 7(4):587–594

    Article  PubMed  Google Scholar 

  • Park HR, Choi SJ, Joo EY et al (2019) The role of anterior thalamic deep brain stimulation as an alternative therapy in patients with previously failed vagus nerve stimulation for refractory epilepsy. Stereot Funct Neuros 97(3):176–182

    Article  Google Scholar 

  • Robinson PA, Rennie CJ, Rowe DL (2002) Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. Phys Rev E 65(4):041924

    Article  CAS  Google Scholar 

  • Robinson PA, Rennie CJ, Rowe DL et al (2004) Estimation of multiscale neurophysiologic parameters by electroencephalographic means. Human Brain Mapp 23(1):53–72

    Article  CAS  Google Scholar 

  • Slaght SJ, Paz T, Mahon S et al (2002) Functional organization of the circuits connecting the cerebral cortex and the basal ganglia: implications for the role of the basal ganglia in epilepsy. Epileptic Disord 4(3):9–22

    Google Scholar 

  • Sorokin JM, Davidson TJ, Frechette E et al (2017) Bidirectional control of generalized epilepsy networks via rapid real-time switching of firing mode. Neuron 93(1):194–210

    Article  CAS  PubMed  Google Scholar 

  • Steriade M (2005) Sleep, epilepsy and thalamic reticular inhibitory neurons. Trends Neurosci 28(6):317–324

    Article  CAS  PubMed  Google Scholar 

  • Suffczynski P, Kalitzin S, Da Silva FHL (2004) Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network. Neuroscience 126(2):467–484

    Article  CAS  PubMed  Google Scholar 

  • Taylor PN, Goodfellow M, Wang Y et al (2013) Towards a large-scale model of patient-specific epileptic spike-wave discharges. Biol Cybern 107(1):83–94

    Article  PubMed  Google Scholar 

  • Van Albada SJ, Gray RT, Drysdale PM, et al(2009) Mean-field modeling of the basal ganglia-thalamocortical system. II: dynamics of parkinsonian oscillations. J Theor Biol 257(4): 664-688

  • Van Albada SJ, Robinson PA(2009) Mean-field modeling of the basal ganglia-thalamocortical system. I: firing rates in healthy and parkinsonian states. J Theor Biol 257(4): 642–663

  • Van Der Vlis TAMB, Schijns OEMG, Schaper FL et al (2019) Deep brain stimulation of the anterior nucleus of the thalamus for drug-resistant epilepsy. Neurosurg Rev 42(2):287–296

    Article  Google Scholar 

  • Van Heukelum S, Kelderhuis J, Janssen P et al (2016) Timing of high-frequency cortical stimulation in a genetic absence model. Neuroscience 324:191–201

    Article  PubMed  Google Scholar 

  • Vuong J, Devergnas A (2017) The role of the basal ganglia in the control of seizure. J Neural Transm 125(3):531–545

    Article  PubMed  Google Scholar 

  • Výtvarová E, Mareček R, Fousek J et al (2017) Large-scale cortico-subcortical functional networks in focal epilepsies: the role of the basal ganglia. Neuro Image Clin 14:28–36

  • Wendling F, Bartolomei F, Modolo J (2017) Neocortical/thalamic in silico models of seizures and epilepsy//Models of seizures and epilepsy. Academic Press, pp. 233–246

  • Yang DP, Robinson PA (2019) Unified analysis of global and focal aspects of absence epilepsy via neural field theory of the corticothalamic system. Phys Rev E 100(3):032405

    Article  CAS  PubMed  Google Scholar 

  • Young JC, Vaughan DN, Paolini AG et al (2018) Electrical stimulation of the piriform cortex for the treatment of epilepsy: a review of the supporting evidence. Epilepsy Behav 88:152–161

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Foundation of China (No. 11602092); the Natural Science Foundation of Hubei Province (No. 2018CFB628); the China Postdoctoral Science Foundation (No. 2018M632184).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, B., Wang, Z., Xu, M. et al. The adjustment mechanism of the spike and wave discharges in thalamic neurons: a simulation analysis. Cogn Neurodyn 16, 1449–1460 (2022). https://doi.org/10.1007/s11571-022-09788-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-022-09788-0

Keywords

Navigation