Log in

Evaluation of single-stage vision models for pose estimation of surgical instruments

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Multiple applications in open surgical environments may benefit from adoption of markerless computer vision depending on associated speed and accuracy requirements. The current work evaluates vision models for 6-degree of freedom pose estimation of surgical instruments in RGB scenes. Potential use cases are discussed based on observed performance.

Methods

Convolutional neural nets were developed with simulated training data for 6-degree of freedom pose estimation of a representative surgical instrument in RGB scenes. Trained models were evaluated with simulated and real-world scenes. Real-world scenes were produced by using a robotic manipulator to procedurally generate a wide range of object poses.

Results

CNNs trained in simulation transferred to real-world evaluation scenes with a mild decrease in pose accuracy. Model performance was sensitive to input image resolution and orientation prediction format. The model with highest accuracy demonstrated mean in-plane translation error of 13 mm and mean long axis orientation error of 5\(^{\circ }\) in simulated evaluation scenes. Similar errors of 29 mm and 8\(^{\circ }\) were observed in real-world scenes.

Conclusion

6-DoF pose estimators can predict object pose in RGB scenes with real-time inference speed. Observed pose accuracy suggests that applications such as coarse-grained guidance, surgical skill evaluation, or instrument tracking for tray optimization may benefit from markerless pose estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Saun TJ, Zuo KJ, Grantcharov TP (2019) Video technologies for recording open surgery: a systematic review. Surg Innov 26(5):599–612

    Article  PubMed  Google Scholar 

  2. Ahmadi E, Masel DT, Metcalf AY, Schuller K (2019) Inventory management of surgical supplies and sterile instruments in hospitals: a literature review. Health Syst 8(2):134–151

    Article  Google Scholar 

  3. Patel A, Ashok A, Rao AS, Singh HN, Tripathi S (2022) Robotic assistant to surgeons for inventory handling. In: IEEE international conference on electronics, computing and communication technologies. 1–4

  4. Rodrigues M, Mayo M, Patros P (2022) OctopusNet: machine learning for intelligent management of surgical tools. Smart Health 23:100244

    Article  Google Scholar 

  5. Rodrigues M, Mayo M, Patros P (2022) Evaluation of deep learning techniques on a novel hierarchical surgical tool dataset. In: Australasian joint conference on artificial intelligence. 169–180

  6. ** A, Yeung S, Jopling J, Krause J, Azagury D, Milstein A, Fei-Fei L (2018) Tool detection and operative skill assessment in surgical videos using region-based convolutional neural networks. In: IEEE winter conference on applications of computer vision. 691–699

  7. Zia A, Sharma Y, Bettadapura V, Sarin EL, Essa I (2018) Video and accelerometer-based motion analysis for automated surgical skills assessment. Int J Comput Assist Radiol Surg 13:443–455

    Article  PubMed  Google Scholar 

  8. Khalid S, Goldenberg M, Grantcharov T, Taati B, Rudzicz F (2020) Evaluation of deep learning models for identifying surgical actions and measuring performance. JAMA Netw Open 3:201664

    Article  Google Scholar 

  9. McKnight RR, Pean CA, Buck JS, Hwang JS, Hsu JR, Pierrie SN (2020) Virtual reality and augmented reality —translating surgical training into surgical technique. Curr Rev Musculoskelet Med 13(6):663–674

    Article  PubMed  PubMed Central  Google Scholar 

  10. Liu D, Li Q, Jiang T, Wang Y, Miao R, Shan F, Li Z (2021) Towards unified surgical skill assessment. In: IEEE conference on computer vision and pattern recognition. 9522–9531

  11. Yang JH, Goodman ED, Dawes AJ, Gahagan JV, Esquivel MM, Liebert CA, Kin C, Yeung S, Gurland BH (2022) Using AI and computer vision to analyze technical proficiency in robotic surgery. Surg Endosc. https://doi.org/10.1007/s00464-022-09781-y

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kadkhodamohammadi A (2016) 3D detection and pose estimation of medical staff in operating rooms using RGB-D images. Dissertation, Strasbourg

  13. ** Y, Dou Q, Chen H, Yu L, Qin J, Fu CW, Heng PA (2017) SV-RCNet: workflow recognition from surgical videos using recurrent convolutional network. IEEE Trans Med Imag 37(5):1114–1126

    Article  Google Scholar 

  14. Padoy N (2019) Machine and deep learning for workflow recognition during surgery. Minim Invasive Therapy Allied Technol 28(2):82–90

    Article  Google Scholar 

  15. Doughty M, Singh K, Ghugre NR (2021) SurgeonAssist-Net: towards context-aware head-mounted display-based augmented reality for surgical guidance. In: international conference on medical image computing and computer-assisted intervention. 667–677

  16. Kadkhodamohammadi A, Sivanesan Uthraraj N, Giataganas P, Gras G, Kerr K, Luengo I, Oussedik S, Stoyanov D (2021) Towards video-based surgical workflow understanding in open orthopaedic surgery. Comput Methods Biomech Biomed Eng Imag Visual 9(3):286–293

    Article  Google Scholar 

  17. Navab N, Blum T, Wang L, Okur A, Wendler T (2012) First deployments of augmented reality in operating rooms. Computer 45(7):48–55

    Article  Google Scholar 

  18. Chen X, Xu L, Wang Y, Wang H, Wang F, Zeng X, Wang Q, Egger J (2015) Development of a surgical navigation system based on augmented reality using an optical see-through head-mounted display. J Biomed Inf 55:124–131

    Article  Google Scholar 

  19. Qian L, Deguet A, Kazanzides P (2018) ARssist: augmented reality on a head mounted display for the first assistant in robotic surgery. Healthc Technol Lett 5(5):194–200

    Article  PubMed  PubMed Central  Google Scholar 

  20. Burström G, Nachabe R, Persson O, Edström E, Terander AE (2019) Augmented and virtual reality instrument tracking for minimally invasive spine surgery: a feasibility and accuracy study. Spine 44(15):1097–1104

    Article  PubMed  Google Scholar 

  21. Elmi-Terander A, Burström G, Nachabe R, Skulason H, Pedersen K, Fagerlund M, Ståhl F, Charalampidis A, Söderman M, Holmin S, Babic D (2019) Pedicle screw placement using augmented reality surgical navigation with intraoperative 3D imaging: a first in-human prospective cohort study. Spine 44(7):517

    Article  PubMed  Google Scholar 

  22. Rodrigues P, Antunes M, Raposo C, Marques P, Fonseca F, Barreto JP (2019) Deep segmentation leverages geometric pose estimation in computer-aided total knee arthroplasty. Healthc Technol Lett 6(6):226–230

    Article  PubMed  PubMed Central  Google Scholar 

  23. Fucentese SF, Koch PP (2021) A novel augmented reality-based surgical guidance system for total knee arthroplasty. Arch Orthop Trauma Surg 141(12):2227–2233

    Article  PubMed  PubMed Central  Google Scholar 

  24. Doughty M, Ghugre NR, Wright GA (2022) Augmenting performance: a systematic review of optical see-through head-mounted displays in surgery. J Imag 8(7):203

    Article  Google Scholar 

  25. von Atzigen M, Liebmann F, Hoch A, Spirig JM, Farshad M, Snedeker J, Fürnstahl P (2022) Marker-free surgical navigation of rod bending using a stereo neural network and augmented reality in spinal fusion. Med Image Anal 77:102365

    Article  Google Scholar 

  26. Xu L, Zhang H, Wang J, Li A, Song S, Ren H, Qi L, Gu JJ, Meng MQ (2022) Information loss challenges in surgical navigation systems: from information fusion to AI-based approaches. Inf Fusion. https://doi.org/10.1016/j.inffus.2022.11.015

    Article  Google Scholar 

  27. Girshick R (2015) Fast R-CNN. In: IEEE international conference on computer vision. 1440–1448

  28. Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: IEEE conference on computer vision and pattern recognition. 3431–3440

  29. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: IEEE conference on computer vision and pattern recognition. 770–778

  30. Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu CY, Berg AC (2016) SSD: Single shot multibox detector. In: European conference on computer vision. 21–37

  31. Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: unified, real-time object detection. In: IEEE conference on computer vision and pattern recognition. 779–788

  32. He K, Gkioxari G, Dollár P, Girshick R (2017) Mask R-CNN. In: IEEE international conference on computer vision. 2961–2969

  33. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: IEEE conference on computer vision and pattern recognition. 4700–4708

  34. Krizhevsky A, Sutskever I, Hinton GE (2017) Imagenet classification with deep convolutional neural networks. Commun ACM 60(6):84–90

    Article  Google Scholar 

  35. Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, Lin S, Guo B (2021) Swin transformer: hierarchical vision transformer using shifted windows. In: IEEE/CVF international conference on computer vision. 10012–10022

  36. Nakawala H, Bianchi R, Pescatori LE, De Cobelli O, Ferrigno G, De Momi E (2019) Deep-onto network for surgical workflow and context recognition. Int J Comput Assist Radiol Surg 14(4):685–696

    Article  PubMed  Google Scholar 

  37. Rivoir D, Bodenstedt S, von Bechtolsheim F, Distler M, Weitz J, Speidel S (2019) Unsupervised temporal video segmentation as an auxiliary task for predicting the remaining surgery duration. In: OR 2.0 context-aware operating theaters and machine learning in clinical neuroimaging. 29–37

  38. Shi X, ** Y, Dou Q, Heng PA (2020) LRTD: long-range temporal dependency based active learning for surgical workflow recognition. Int J Comput Assist Radiol Surg 15(9):1573–1784

    Article  PubMed  Google Scholar 

  39. van Amsterdam B, Clarkson MJ, Stoyanov D (2021) Gesture recognition in robotic surgery: a review. IEEE Trans Biomed Eng. https://doi.org/10.1109/TBME.2021.3054828.

    Article  PubMed  Google Scholar 

  40. **a T, Jia F (2021) Against spatial-temporal discrepancy: contrastive learning-based network for surgical workflow recognition. Int J Comput Assist Radiol Surg 16(5):839–848

    Article  PubMed  Google Scholar 

  41. Zhang D, Wang R, Lo B (2021) Surgical gesture recognition based on bidirectional multi-layer independently RNN with explainable spatial feature extraction. In: IEEE international conference on robotics and automation. 1350–1356

  42. Mottaghi A, Sharghi A, Yeung S, Mohareri O (2022) Adaptation of surgical activity recognition models across operating rooms. In: Medical image computing and computer assisted intervention. 530–540

  43. Valderrama N, Ruiz Puentes P, Hernández I, Ayobi N, Verlyck M, Santander J, Caicedo J, Fernández N, Arbeláez P (2022) Towards holistic surgical scene understanding. In: medical image computing and computer assisted intervention. 442–452

  44. Zhang Y, Bano S, Page AS, Deprest J, Stoyanov D, Vasconcelos F (2022) Retrieval of surgical phase transitions using reinforcement learning. In: medical image computing and computer assisted intervention. 497–506

  45. ** Y, Yu Y, Chen C, Zhao Z, Heng PA, Stoyanov D (2022) Exploring intra-and inter-video relation for surgical semantic scene segmentation. IEEE Trans Med Imag 41(11):2991–3002

    Article  Google Scholar 

  46. Müller LR, Petersen J, Yamlahi A, Wise P, Adler TJ, Seitel A, Kowalewski KF, Müller B, Kenngott H, Nickel F, Maier-Hein L (2022) Robust hand tracking for surgical telestration. Int J Comput Assist Radiol Surg 17(8):1477–1486

    Article  PubMed  PubMed Central  Google Scholar 

  47. Elfring R, de la Fuente M, Radermacher K (2010) Assessment of optical localizer accuracy for computer aided surgery systems. Comput Aid Surg 15(1–3):1–12

    Article  Google Scholar 

  48. Picard F, Deep K, Jenny JY (2016) Current state of the art in total knee arthroplasty computer navigation. Knee Surg Sports Traumatol Arthrosc 24(11):3565–3574

    Article  PubMed  Google Scholar 

  49. Simoes R, Raposo C, Barreto JP, Edwards P, Stoyanov D (2018) Visual tracking vs optical tracking in computer-assisted intervention. IEEE Trans Biomed Eng

  50. Herregodts S, Verhaeghe M, De Coninck B, Forward M, Verstraete MA, Victor J, De Baets P (2021) An improved method for assessing the technical accuracy of optical tracking systems for orthopaedic surgical navigation. Int J Med Robot Comput Assist Surg 17(4):e2285

    Article  Google Scholar 

  51. Rodrigues M, Mayo M, Patros P (2022) Surgical tool datasets for machine learning research: a survey. Int J Comput Vis 130(9):2222–2248

    Article  Google Scholar 

  52. Hein J, Seibold M, Bogo F, Farshad M, Pollefeys M, Fürnstahl P, Navab N (2021) Towards markerless surgical tool and hand pose estimation. Int J Comput Assist Radiol Surg 16(5):799–808

    Article  PubMed  PubMed Central  Google Scholar 

  53. Doughty M, Ghugre NR (2022) HMD-EgoPose: head-mounted display-based egocentric marker-less tool and hand pose estimation for augmented surgical guidance. Int J Comput Assist Radiol Surg. https://doi.org/10.1007/s11548-022-02688-y

    Article  PubMed  Google Scholar 

  54. Laina I, Rieke N, Rupprecht C, Vizcaíno JP, Eslami A, Tombari F, Navab N (2017) Concurrent segmentation and localization for tracking of surgical instruments. In: international conference on medical image computing and computer-assisted intervention. 664–672

  55. Garcia-Peraza-Herrera LC, Li W, Fidon L, Gruijthuijsen C, Devreker A, Attilakos G, Deprest J, Vander Poorten E, Stoyanov D, Vercauteren T, Ourselin S (2017) ToolNet: holistically-nested real-time segmentation of robotic surgical tools. In: IEEE/RSJ international conference on intelligent robots and systems. 5717–5722

  56. Aklilu J, Yeung S (2022) ALGES: active learning with gradient embeddings for semantic segmentation of laparoscopic surgical images. In: machine learning for healthcare. 182

  57. Kurmann T, Marquez Neila P, Du X, Fua P, Stoyanov D, Wolf S, Sznitman R (2017) Simultaneous recognition and pose estimation of instruments in minimally invasive surgery. In: international conference on medical image computing and computer-assisted intervention. 505–513

  58. Du X, Kurmann T, Chang PL, Allan M, Ourselin S, Sznitman R, Kelly JD, Stoyanov D (2018) Articulated multi-instrument 2-D pose estimation using fully convolutional networks. IEEE Trans Med Imag 37(5):1276–1287

    Article  Google Scholar 

  59. Colleoni E, Moccia S, Du X, De Momi E, Stoyanov D (2019) Deep learning based robotic tool detection and articulation estimation with spatio-temporal layers. IEEE Robot Autom Lett 4(3):2714–2721

    Article  Google Scholar 

  60. Kayhan M, Köpüklü O, Sarhan MH, Yigitsoy M, Eslami A, Rigoll G (2021) Deep attention based semi-supervised 2D-pose estimation for surgical instruments. In: international conference on pattern recognition. 444–460

  61. Sarikaya D, Corso JJ, Guru KA (2017) Detection and localization of robotic tools in robot-assisted surgery videos using deep neural networks for region proposal and detection. IEEE Trans Med Imag 36(7):1542–1549

    Article  Google Scholar 

  62. Fujii R, Hachiuma R, Kajita H, Saito H (2022) Surgical tool detection in open surgery videos. Appl Sci 12(20):10473

    Article  CAS  Google Scholar 

  63. Su H, Qi CR, Li Y, Guibas LJ (2015) Render for CNN: viewpoint estimation in images using CNNs trained with rendered 3D model views. In: IEEE international conference on computer vision. 2686–2694

  64. Kehl W, Manhardt F, Tombari F, Ilic S, Navab N (2017) SSD-6D: making RGB-based 3D detection and 6D pose estimation great again. In: IEEE international conference on computer vision. 1521–1529

  65. Sundermeyer M, Marton ZC, Durner M, Brucker M, Triebel R (2018) Implicit 3D orientation learning for 6D object detection from RGB images. In: European conference on computer vision. 699–715

  66. Su Y, Rambach J, Pagani A, Stricker D (2021) SynPo-Net—accurate and fast CNN-based 6-DoF object pose estimation using synthetic training. Sensors 21(1):300

    Article  PubMed  PubMed Central  Google Scholar 

  67. Wang G, Manhardt F, Tombari F, Ji X (2021) GDR-Net: geometry-guided direct regression network for monocular 6D object pose estimation. In: IEEE conference on computer vision and pattern recognition. 16611–16621

  68. Pavlakos G, Zhou X, Chan A, Derpanis KG, Daniilidis K (2017) 6-DoF object pose from semantic keypoints. In: IEEE international conference on robotics and automation. 2011–2018

  69. Tekin B, Sinha SN, Fua P (2018) Real-time seamless single shot 6D object pose prediction. In: IEEE conference on computer vision and pattern recognition. 292–301

  70. Li Z, Wang G, Ji X (2019) CDPN: coordinates-based disentangled pose network for real-time RGB-based 6-DoF object pose estimation. In: IEEE/CVF international conference on computer vision. 7678–7687

  71. Park K, Patten T, Vincze M (2019) Pix2Pose: pixel-wise coordinate regression of objects for 6d pose estimation. In: IEEE/CVF international conference on computer vision. 7668–7677

  72. Peng S, Liu Y, Huang Q, Zhou X, Bao H (2019) PVNet: pixel-wise voting network for 6-DoF pose estimation. In: IEEE conference on computer vision and pattern recognition. 4561–4570

  73. Zakharov S, Shugurov I, Ilic S (2019) DPOD: 6D pose object detector and refiner. In: IEEE/CVF international conference on computer vision. 1941–1950

  74. König R, Drost B (2020) A hybrid approach for 6DoF pose estimation. In: computer vision-ECCV 2020 workshops. 700–706

  75. Burton WS, Myers CA, Jensen A, Hamilton L, Shelburne KB, Banks SA, Rullkoetter PJ (2021) Automatic tracking of healthy joint kinematics from stereo-radiography sequences. Comput Biol Med 139:104945

    Article  PubMed  Google Scholar 

  76. Rad M, Lepetit V (2017) BB8: a scalable, accurate, robust to partial occlusion method for predicting the 3D poses of challenging objects without using depth. In: IEEE international conference on computer vision. 3828–3836

  77. **ang Y, Schmidt T, Narayanan V, Fox D (2018) PoseCNN: a convolutional neural network for 6D object pose estimation in cluttered scenes. In: Robotics: Science and Systems

  78. Li Y, Wang G, Ji X, **ang Y, Fox D (2018) DeepIM: deep iterative matching for 6D pose estimation. In: European conference on computer vision. 683–698

  79. Labbé Y, Carpentier J, Aubry M, Sivic J (2020) CosyPose: consistent multi-view multi-object 6D pose estimation. In: European conference on computer vision. 574–591

  80. Hinterstoisser S, Lepetit V, Ilic S, Holzer S, Bradski G, Konolige K, Navab N (2012) Model based training, detection and pose estimation of texture-less 3D objects in heavily cluttered scenes. In: computer vision-ACCV 2012: 11th Asian conference on computer vision. 548–562

  81. Brachmann E, Krull A, Michel F, Gumhold S, Shotton J, Rother C (2014) Learning 6D object pose estimation using 3D object coordinates. In: European conference on computer vision. 536–551

  82. **ang Y, Mottaghi R, Savarese S (2014) Beyond pascal: a benchmark for 3D object detection in the wild. In: IEEE winter conference on applications of computer vision. 75–82

  83. Rennie C, Shome R, Bekris KE, De Souza AF (2016) A dataset for improved RGBD-based object detection and pose estimation for warehouse pick-and-place. IEEE Robot Autom Lett 1(2):1179–1185

    Article  Google Scholar 

  84. Hodan T, Haluza P, Obdržálek Š, Matas J, Lourakis M, Zabulis X (2017) T-LESS: an RGB-D dataset for 6D pose estimation of texture-less objects. In: IEEE winter conference on applications of computer vision. 880–888

  85. Hodan T, Michel F, Brachmann E, Kehl W, GlentBuch A, Kraft D, Drost B, Vidal J, Ihrke S, Zabulis X, Sahin C (2018) BOP: benchmark for 6D object pose estimation. In: European conference on computer vision. 19–34

  86. Brachmann E, Michel F, Krull A, Yang MY, Gumhold S (2016) Uncertainty-driven 6D pose estimation of objects and scenes from a single RGB image. In: IEEE conference on computer vision and pattern recognition. 3364–3372

  87. Hodaň T, Matas J, Obdržálek Š (2016) On evaluation of 6D object pose estimation. In: European conference on computer vision. 606–619

  88. Hodaň T, Sundermeyer M, Drost B, Labbé Y, Brachmann E, Michel F, Rother C, Matas J (2020) BOP challenge 2020 on 6D object localization. In: European conference on computer vision. 577–594

  89. Esfandiari H, Newell R, Anglin C, Street J, Hodgson AJ (2018) A deep learning framework for segmentation and pose estimation of pedicle screw implants based on C-arm fluoroscopy. Int J Comput Assist Radiol Surg 13(8):1269–1282

    Article  PubMed  Google Scholar 

  90. Gao C, Farvardin A, Grupp RB, Bakhtiarinejad M, Ma L, Thies M, Unberath M, Taylor RH, Armand M (2020) Fiducial-free 2D/3D registration for robot-assisted femoroplasty. IEEE Trans Med Robot Bionic 2(3):437–446

    Article  Google Scholar 

  91. Marion P, Florence PR, Manuelli L, Tedrake R (2018) Label fusion: a pipeline for generating ground truth labels for real RGBD data of cluttered scenes. In: IEEE international conference on robotics and automation. 3235–3242

  92. Cartucho J, Tukra S, Li Y, Elson DS, Giannarou S (2021) VisionBlender: a tool to efficiently generate computer vision datasets for robotic surgery. Comput Methods Biomecha Biomed Eng Imag Visual 9(4):331–338

    Article  Google Scholar 

  93. Liu X, Iwase S, Kitani KM (2021) StereOBJ-1M: large-scale stereo image dataset for 6D object pose estimation. In: IEEE international conference on computer vision. 10870–10879

  94. Maier-Hein L et al (2017) Surgical data science for next-generation interventions. Nat Biomed Eng 1(9):691–696

    Article  PubMed  Google Scholar 

  95. Maier-Hein L et al (2022) Surgical data science—from concepts toward clinical translation. Med Image Anal 76:102306

    Article  PubMed  Google Scholar 

  96. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, Berg AC, Fei-Fei L (2015) ImageNet large scale visual recognition challenge. Int J Comput Vis 115(3):211–252

    Article  Google Scholar 

  97. Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z, Desmaison A, Antiga L, Lerer A (2017) Automatic differentiation in PyTorch

  98. Blender. https://www.blender.org

  99. Everingham M, Eslami S, Van Gool L, Williams CK, Winn J, Zisserman A (2015) The PASCAL visual object classes challenge: a retrospective. Int J Comput Vis 111(1):98–136

    Article  Google Scholar 

  100. Nichol K. Painter by numbers, wikiart. https://www.kaggle.com/c/painter-by-numbers

  101. Tobin J, Fong R, Ray A, Schneider J, Zaremba W, Abbeel P (2017) Domain randomization for transferring deep neural networks from simulation to the real world. In: IEEE international conference on intelligent robots and systems. 23–30

  102. Spong MW, Hutchinson S, Vidyasagar M (2006) Robot modeling and control. Wiley, New York

    Google Scholar 

  103. Huynh DQ (2009) Metrics for 3D rotations: comparison and analysis. J Math Imag Vis 35(2):155–64

    Article  Google Scholar 

  104. Yang H, Shi J, Carlone L (2020) Teaser: fast and certifiable point cloud registration. IEEE Trans Robot 37(2):314–33

    Article  Google Scholar 

  105. Hintze JL, Nelson RD (1998) Violin plots: AS box plot-density trace synergism. Am Statistician 52(2):181–4

    Google Scholar 

  106. Sattler T, Zhou Q, Pollefeys M, Leal-Taixe L (2019) Understanding the limitations of CNN-based absolute camera pose regression. In: IEEE/CVF conference on computer vision and pattern recognition. 3302–3312

  107. Qi CR, Su H, Mo K, Guibas LJ (2017) PointNet: deep learning on point sets for 3D classification and segmentation. In: IEEE conference on computer vision and pattern recognition. 652-660

  108. Qi CR, Yi L, Su H, Guibas LJ (2017) PointNet++: deep hierarchical feature learning on point sets in a metric space. In: advances in neural information processing systems. 30

  109. Gao H, Ji S (2019) Graph U-Nets. In: International conference on machine learning. 2083-2092

  110. He Y, Liang B, Zou Y, He J, Yang J (2017) Depth errors analysis and correction for time-of-flight (ToF) cameras. Sensors 17(1):92

    Article  PubMed  PubMed Central  Google Scholar 

  111. Ganin Y, Lempitsky V (2015) Unsupervised domain adaptation by backpropagation. In: International conference on machine learning. 1180–1189

  112. Jones RB, Greene AT, Polakovic SV, Hamilton MA, Mohajer NJ, Youderian AR, Parsons IM, Saadi PD, Cheung EV (2020) Accuracy and precision of placement of the glenoid baseplate in reverse total shoulder arthroplasty using a novel computer assisted navigation system combined with preoperative planning: a controlled cadaveric study. Semin Arthroplast JSES. 39(1):3–20

    Google Scholar 

  113. Martin JA, Regehr G, Reznick R, Macrae H, Murnaghan J, Hutchison C, Brown M (1997) Objective structured assessment of technical skill (OSATS) for surgical residents. Br J Surg 84(2):273–278

    CAS  PubMed  Google Scholar 

  114. Ahmed K, Miskovic D, Darzi A, Athanasiou T, Hanna GB (2011) Observational tools for assessment of procedural skills: a systematic review. Am J Surg 202(4):469–480

    Article  PubMed  Google Scholar 

  115. Alvand A, Logishetty K, Middleton R, Khan T, Jackson WF, Price AJ, Rees JL (2013) Validating a global rating scale to monitor individual resident learning curves during arthroscopic knee meniscal repair Arthroscopy. J Arthrosc Relat Surg 29(5):906–912

    Article  Google Scholar 

  116. Gallagher AG, O’Sullivan GC, Leonard G, Bunting BP, McGlade KJ (2014) Objective structured assessment of technical skills and checklist scales reliability compared for high stakes assessments. ANZ J Surg 84(7–8):568–573

    Article  PubMed  Google Scholar 

  117. Lam K, Chen J, Wang Z, Iqbal FM, Darzi A, Lo B, Purkayastha S, Kinross JM (2022) Machine learning for technical skill assessment in surgery: a systematic review. NPJ Digit Med 5(1):1–6

    Article  Google Scholar 

  118. Cichos KH, Hyde ZB, Mabry SE, Ghanem ES, Brabston EW, Hayes LW, McGwin G Jr, Ponce BA (2019) Optimization of orthopedic surgical instrument trays: lean principles to reduce fixed operating room expenses. J Arthroplast 34(12):2834–2840

    Article  Google Scholar 

  119. Stockert EW, Langerman A (2014) Assessing the magnitude and costs of intraoperative inefficiencies attributable to surgical instrument trays. J Am College Surg 219(4):646–655

    Article  Google Scholar 

  120. Crosby L, Lortie E, Rotenberg B, Sowerby L (2020) Surgical instrument optimization to reduce instrument processing and operating room setup time. Otolaryngol Head Neck Surg 162(2):215–219

    Article  PubMed  Google Scholar 

  121. John-Baptiste A, Sowerby LJ, Chin CJ, Martin J, Rotenberg BW (2016) Comparing surgical trays with redundant instruments with trays with reduced instruments: a cost analysis. Can Med Assoc Open Access J 4(3):E404–E408

  122. Lonner JH, Goh GS, Sommer K, Niggeman G, Levicoff EA, Vernace JV, Good RP (2021) Minimizing surgical instrument burden increases operating room efficiency and reduces perioperative costs in total joint arthroplasty. J Arthroplast 36(6):1857–1863

    Article  Google Scholar 

  123. Dyas AR, Lovell KM, Balentine CJ, Wang TN, Porterfield JR Jr, Chen H, Lindeman BM (2018) Reducing cost and improving operating room efficiency: examination of surgical instrument processing. J Surg Res 229:15–19

    Article  PubMed  Google Scholar 

  124. Hill I, Olivere L, Helmkamp J, Le E, Hill W, Wahlstedt J, Khoury P, Gloria J, Richard MJ, Rosenberger LH, Codd PJ (2022) Measuring intraoperative surgical instrument use with radio-frequency identification. JAMIA Open 5(1):ooac003

Download references

Acknowledgements

The authors thank Nvidia for their generous hardware donation and also the University of Denver Unmanned Systems Research Institute for allowing access to the robotic manipulator.

Funding

This work was funded by the University of Denver.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Burton.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 87 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burton, W., Myers, C., Rutherford, M. et al. Evaluation of single-stage vision models for pose estimation of surgical instruments. Int J CARS 18, 2125–2142 (2023). https://doi.org/10.1007/s11548-023-02890-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-023-02890-6

Keywords

Navigation