Log in

Evaluation of reproducibility of the MOCART score in patients with osteochondral lesions of the talus repaired using the autologous matrix-induced chondrogenesis technique

  • MAGNETIC RESONANCE IMAGING
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the applicability and reproducibility of magnetic resonance observation of cartilage repair tissue (MOCART) score for morphological evaluation of osteochondral lesions of the talus (OLT) repaired using autologous matrix-induced chondrogenesis (AMIC) technique.

Methods

Two radiologists (R1–R2) and two orthopaedists (O1–O2) independently reviewed 26 ankle MRIs performed on 13 patients (6 females; age: 38.9 ± 15.9, 14–63) with OLT repaired using AMIC. The MRIs were performed at 6 and 12 months from surgery. For inter/intra-observer agreement evaluation for each variable of the MOCART, we used Cohen’s kappa coefficient. Progression of MOCART between 6- and 12-month evaluation was assessed using the Wilcoxon test. The Spearman’s correlation coefficient was used to evaluate the correlation between baseline lesion size and MOCART.

Results

The inter-observer agreement between R1 and R2 ranged from poor (adhesions, k = 0.124) to almost perfect (subchondral bone, k = 0.866), between O1 and O2 from absent (effusion, k = −0.190) to poor (surface, k = 0.172), and between R1 and O1 from absent (cartilage interface, k = −0.324) to fair (signal intensity, k = 0.372). The intra-observer agreement of R1 ranged from poor (signal intensity, k = 0.031) to substantial (subchondral lamina, k = 0.677), while that of O1 from absent (subchondral bone, k = −0.061) to substantial (surface, k = 0.663). There was a significant increase of MOCART between 6- and 12-month evaluation of R1 (Z = −2.672; P = 0.008), R2 (Z = −2.721; P = 0.007) and O1 (Z = −3.034; P = 0.002). Conversely, the increase of MOCART of O2 was not significant (Z = −1.665; P = 0.096). Inverse correlation between lesion size at baseline and MOCART was significant at 12-month evaluation (−0.726; P = 0.005).

Conclusion

MRI has an important role in the follow-up of surgical repaired OLT, but MOCART score does not seem to be sufficiently reproducible to be applied for this purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Uozumi H, Sugita T, Aizawa T, Takahashi A, Ohnuma M, Itoi E (2009) Histologic findings and possible causes of osteochondritis dissecans of the knee. Am J Sports Med 37:2003–2008

    Article  PubMed  Google Scholar 

  2. Yonetani Y, Matsuo T, Nakamura N, Natsuume T, Tanaka Y, Shiozaki Y et al (2010) Fixation of detached osteochondritis dissecans lesions with bioabsor—bable pins: clinical and histologic evaluation. Arthroscopy 26:782–789

    Article  PubMed  Google Scholar 

  3. van Dijk CN, Reilingh ML, Zengerink M, van Bergen CJ (2010) Osteochondral defects in the ankle: why painful? Knee Surg Sports Traumatol Arthrosc 18:570–580

    Article  PubMed  PubMed Central  Google Scholar 

  4. Vannini F, Costa GG, Caravelli S, Pagliazzi G, Mosca M (2016) Treatment of osteochondral lesions of the talus in athletes: what is the evidence? Joints 4:111–120

    Article  PubMed  PubMed Central  Google Scholar 

  5. Usuelli FG, D’Ambrosi R, Maccario C, Boga M, de Girolamo L (2016) All-arthroscopic AMIC® (AT-AMIC®) technique with autologous bone graft for talar osteochondral defects: clinical and radiological results. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-016-4318-4

    Google Scholar 

  6. Schuman L, Struijs PA, van Dijk CN (2002) Arthroscopic treatment for osteochondral defects of the talus. Results at follow-up at 2–11 years. J Bone Joint Surg Br 84:364–368

    Article  CAS  PubMed  Google Scholar 

  7. Recht M, White LM, Winalski CS, Miniaci A, Minas T, Parker RD (2003) MR imaging of cartilage repair procedures. Skelet Radiol 32:185–200

    Article  Google Scholar 

  8. Marlovits S, Striessnig G, Resinger CT, Aldrian SM, Vecsei V, Imhof H et al (2004) Definition of pertinent parameters for the evaluation of articular cartilage repair tissue with high-resolution magnetic resonance imaging. Eur J Radiol 52:310–319

    Article  PubMed  Google Scholar 

  9. Marlovits S, Singer P, Zeller P, Mandl I, Haller J, Trattnig S (2006) Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: determination of interobserver variability and correlation to clinical outcome after 2 years. Eur J Radiol 57:16–23

    Article  PubMed  Google Scholar 

  10. Usuelli FG, Grassi M, Manzi L, Guarrella V, Boga M, De Girolamo L (2016) Treatment of osteochondral lesions of the talus with autologous collagen-induced chondrogenesis: clinical and magnetic resonance evaluation at one-year follow-up. Joints 4:80–86

    Article  PubMed  PubMed Central  Google Scholar 

  11. Aurich M, Bedi HS, Smith PJ, Rolauffs B, Mückley T, Clayton J et al (2011) Arthroscopic treatment of osteochondral lesions of the ankle with matrix-associated chondrocyte implantation: early clinical and magnetic resonance imaging results. Am J Sports Med 39:311–319

    Article  PubMed  Google Scholar 

  12. Lee KT, Choi YS, Lee YK, Cha SD, Koo HM (2011) Comparison of MRI and arthroscopy in modified MOCART scoring system after autologous chondrocyte implantation for osteochondral lesion of the talus. Orthopedics 34:e356–e362

    PubMed  Google Scholar 

  13. Buda R, Vannini F, Cavallo M, Grigolo B, Cenacchi A, Giannini S (2010) Osteochondral lesions of the knee: a new one-step repair technique with bone marrow-derived cells. J Bone Joint Surg Am 92:2–11

    Article  PubMed  Google Scholar 

  14. Kon E, Delcogliano M, Filardo G, Pressato D, Busacca M, Grigolo B et al (2010) A novel nano-composite multi-layered biomaterial for treatment of osteochondral lesions: technique note and an early stability pilot clinical trial. Injury 41:693–701

    Article  CAS  PubMed  Google Scholar 

  15. Goebel L, Zurakowski D, Müller A, Pape D, Cucchiarini M, Madry H (2014) 2D and 3D MOCART scoring systems assessed by 9.4 T high-field MRI correlate with elementary and complex histological scoring systems in a translational model of osteochondral repair. Osteo-arthritis Cartil 22:1386–1395

    Article  CAS  Google Scholar 

  16. McHugh ML (2012) Interrater reliability: the kappa statistic. Biochemia Medica (Zagreb) 22:276–822

    Article  Google Scholar 

  17. Ferkel RD, Cheng MS, Applegate GR (1995) Osteochondral lesions of the talus: a radiologic and surgical comparison. Presented at the Annual Meeting of the American Academy of Orthopaedic Surgeons, Orlando, FL

  18. Oussedik S, Tsitskaris K, Parker D (2015) Treatment of articular cartilage lesions of the knee by microfracture or autologous chondrocyte implantation: a systematic review. Arthroscopy 31:732–744

    Article  PubMed  Google Scholar 

  19. Lynch TS, Patel RM, Benedick A, Amin NH, Jones MH, Miniaci A (2015) Systemic review of autogenous osteochondral transplant outcomes. Arthroscopy 31:746–754

    Article  PubMed  Google Scholar 

  20. Potter HG, Black BR, Chong LR (2009) New techniques in articular cartilage imaging. Clin Sports Med 28:77–94

    Article  PubMed  Google Scholar 

  21. Potter HG, Linklater JA, Allen AA, Hannafin JA, Haas SB (1998) Magnetic resonance imaging of articular cartilage in the knee: an evaluation with use of fast spin-echo imaging. J Bone Joint Surg Am 80:1276–1284

    Article  CAS  PubMed  Google Scholar 

  22. Bredella MA, Tirman PF, Peterfy CG, Zarlingo M, Feller JF, Bost FW et al (1999) Accuracy of T2-weighted fast spin echo MR imaging with fat saturation in detecting cartilage defects in the knee: comparison with arthroscopy in 130 patients. AJR Am J Roentgenol 172:1073–1080

    Article  CAS  PubMed  Google Scholar 

  23. Sofu H, Kockara N, Oner A, Camurcu Y, Issin A, Sahin V (2017) Results of hyaluronic acide-based cell-free scaffold application in combination with microfracture for the treatment of osteochondral lesions of the knee: 2-year comparative study. Arthroscopy 33:209–216

    Article  PubMed  Google Scholar 

  24. Trattnig S, Ohel K, Mlynarik V, Juras V, Zbyn S, Korner A (2015) Morphological and compositional monitoring of a new cell-free cartilage repair hydrogel technology-GelrinC by MR using semi-quantitative MOCART scoring and quantitative T2 index and new zonal T2 index calculation. Osteoarthr Cartil 23:2224–2232

    Article  CAS  PubMed  Google Scholar 

  25. Kon E, Filardo G, Di Martino A, Busacca M, Molo A, Perdisa F et al (2014) Clinical results and MRI evolution of a nano-composite multilayered biomaterial for osteochondral regeneration at 5 years. Am J Sports Med 42:158–165

    Article  PubMed  Google Scholar 

  26. Hannon CP, Ross KA, Murawski CD, Deyer TW, Smyth NA, Hogan MV et al (2016) Arthroscopic bone marrow stimulation and concentrated bone marrow aspirate for osteochondral lesions of the talus: a case-control study of functional and magnetic resonance observation of cartilage repair tissue outcomes. Arthroscopy 32:339–347

    Article  PubMed  Google Scholar 

  27. Anders S, Goetz J, Schubert T, Grifka J, Schaumburger J (2012) Treatment of deep articular talus lesions by matrix associated autologous chondrocyte implantation—results at five years. Int Orthop 36:2279–2285

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wiewiorski M, Miska M, Kretzschmar M, Studler U, Bieri O, Valderrabano V (2013) Delayed gadolinium-enhanced MRi of cartilage of the ankle joint: results after autologous matrix-induced chondrogenesis (AMiC)-aided reconstruction of osteochondral lesions of the talus. Clin Radiol 68:1031–1038

    Article  CAS  PubMed  Google Scholar 

  29. Valderrabano V, Miska M, Leumann A, Wiewiorski M (2013) Reconstruction of osteochondral lesions of the talus with autologous spongiosa grafts and autologous matrix-induced chondrogenesis. Am J Sports Med 41:519–527

    Article  PubMed  Google Scholar 

  30. Nemec SF, Marlovits S, Trattnig S (2009) Persistent bone marrow edema after osteochondral autograft transplantation in the knee joint. Eur J Radiol 71:159–163

    Article  PubMed  Google Scholar 

  31. Trattnig S (1997) Overuse of hyaline cartilage and imaging. Eur J Radiol 25:188–198

    Article  CAS  PubMed  Google Scholar 

  32. Jt Samosky, Burstein D, Eric Grimson W, Howe R, Martin S, Gray ML (2005) Spatially-localized correlation of dGEMRIC-measured GAG distribution and mechanical stiffness in the human tibial plateau. J Orthop Res 23:93–101

    Article  Google Scholar 

  33. Doniselli FM, Albano D, Chianca V, Cimmino MA, Sconfienza LM (2017) Gadolinium accumulation after contrast-enhanced magnetic resonance imaging: what rheumatologists should know. Clin Rheumatol 36:977–980

    Article  PubMed  Google Scholar 

  34. Savarino E, Chianca V, Bodini G, Albano D, Messina C, Tontini GE, Sconfienza LM (2017) Gadolinium accumulation after contrast-enhanced magnetic resonance imaging: which implications in patients with Crohn’s disease? Dig Liver Dis 49:728–730

    Article  PubMed  Google Scholar 

  35. Welsch GH, Mamisch TC, Domayer SE, Dorotka R, Kutscha-Lissberg F, Marlovits S et al (2008) Cartilage T2 assessment at 3-T MR imaging: in vivo differentiation of normal hyaline cartilage from reparative tissue after two cartilage repair procedures—initial experience. Radiology 247:153–161

    Article  Google Scholar 

  36. Kubosch EJ, Erdle B, Izadpanah K, Kubosch D, Uhl M, Südkamp NP et al (2016) Clinical outcome and T2 assessment following autologous matrix-induced chondrogenesis in osteochondral lesions of the talus. Int Orthop 40:65–71

    Article  PubMed  Google Scholar 

  37. Giannini S, Buda R, Battaglia M, Cavallo M, Ruffilli A, Ramponi L et al (2013) One-step repair in talar osteochondral lesions: 4-year clinical results and t2-map** capability in outcome prediction. Am J Sports Med 41:511–518

    Article  PubMed  Google Scholar 

  38. Albano D, Martinelli N, Bianchi A, Messina C, Malerba F, Sconfienza LM (2017) Clinical and imaging outcome of osteochondral lesions of the talus treated using autologous matrix-induced chondrogenesis technique with a biomimetic scaffold. BMC Musculoskelet Disord 18:306

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Albano.

Ethics declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. For this type of study, formal consent is not required.

Funding

No financial support has been received for the present study.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albano, D., Martinelli, N., Bianchi, A. et al. Evaluation of reproducibility of the MOCART score in patients with osteochondral lesions of the talus repaired using the autologous matrix-induced chondrogenesis technique. Radiol med 122, 909–917 (2017). https://doi.org/10.1007/s11547-017-0794-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-017-0794-y

Keywords

Navigation