Log in

Real-World Data on Pembrolizumab for Pretreated Non-Small-Cell Lung Cancer: Clinical Outcome and Relevance of the Lung Immune Prognostic Index

  • Original Research Article
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Background

Pembrolizumab is licensed for the treatment of pre-treated and PD-L1 positive non-small cell lung cancer (NSCLC), but response is heterogeneous. In this context, the Lung Immune Prognostic Index (LIPI) has been proposed as tool to prognosticate outcome.

Objective

To investigate the real-world efficacy and safety of pembrolizumab in pre-treated NSCLC patients and the clinical utility of LIPI for patients’ selection.

Patients and Methods

Patients with pre-treated NSCLC and PD-L1 ≥ 1% treated with pembrolizumab were included in this retrospective series. The LIPI was used to classify patients in 3 prognostics subgroups according to the pre-treatment dNLR (derived neutrophil to lymphocyte ratio) and LDH in blood. The prognostic impact of the LIPI on progression free survival (PFS) and overall survival (OS) was evaluated with Cox regression. The combined effect of LIPI and other relevant prognostic factors was explored with multivariate regression.

Results

In total, 113 consecutive patients were included. Median (mPFS) and mOS was 4.3 (2.6–6.7) and 13.5 (10.3–17.7) months, respectively. Good-, intermediate-, and poor-LIPI was found in 54 (47.8%), 45 (39.8%), and 8 (7.1%) patients, respectively. Median PFS was 5.1 (2.8–9.1), 3.0 (2.5–6.8), and 1.4 (0.5–18.7) months, and mOS was 17.2 (12.0–26.4), 11.8 (8.4–17.1), and 3.7 (0.5–not calculable) months for good-, intermediate-, and poor-LIPI group, respectively. Patients with intermediate-LIPI and poor-LIPI had worse PFS versus good-LIPI, and statistically significant worse OS (p = 0.030 and p = 0.013, respectively). In the multivariate analysis, intermediate- versus good-LIPI (p = 0.190) was not independently associated to PFS or OS. Patients with both good-LIPI and high (≥ 50%) PD-L1 had better OS than all other subgroups defined by LIPI and PD-L1. Immune-related adverse events (irAEs) occurred in 47 (41.6%) patients (12.4% grade ≥ 3). In a time-varying analysis, irAEs were statistically associated with longer OS (HR 0.51, 0.31–0.84; p = 0.008).

Conclusion

In our series, the outcome of pembrolizumab in pre-treated NSCLC is consistent with the registration trial. Lung Immune Prognostic Index is a readily available tool able to prognosticate outcome, also in PD-L1-high patients. The positive association between irAEs and OS might aid decision making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. https://gco.iarc.fr/. Accessed 12 Dec 2021.

  2. https://statistics.blf.org.uk/lung-cancer. Accessed 12 Dec 2021.

  3. Lung cancer statistics | Cancer Research UK . https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/lung-cancer. Accessed 12 Dec 2021.

  4. Shepherd FA, Dancey J, Ramlau R, Mattson K, Gralla R, O’Rourke M, et al. Prospective randomized trial of docetaxel versus best supportive care in patients with non-small-cell lung cancer previously treated with platinum-based chemotherapy. J Clin Oncol. 2000;18:2095–103. https://doi.org/10.1200/JCO.2000.18.10.2095.

    Article  CAS  PubMed  Google Scholar 

  5. Hanna N, Shepherd FA, Fossella FV, Pereira JR, Demarinis F, Von Pawel J, et al. Randomized phase III trial of pemetrexed versus docetaxel in patients with non-small-cell lung cancer previously treated with chemotherapy. J Clin Oncol. 2004;22:1589–97. https://doi.org/10.1200/JCO.2004.08.163.

    Article  CAS  PubMed  Google Scholar 

  6. Reck M, Kaiser R, Mellemgaard A, Douillard JY, Orlov S, Krzakowski M, et al. Docetaxel plus nintedanib versus docetaxel plus placebo in patients with previously treated non-small-cell lung cancer (LUME-Lung 1): a phase 3, double-blind, randomised controlled trial. Lancet Oncol. 2014;15:143–55. https://doi.org/10.1016/S1470-2045(13)70586-2.

    Article  CAS  PubMed  Google Scholar 

  7. Garon EB, Ciuleanu TE, Arrieta O, Prabhash K, Syrigos KN, Goksel T, et al. Ramucirumab plus docetaxel versus placebo plus docetaxel for second-line treatment of stage IV non-small-cell lung cancer after disease progression on platinum-based therapy (REVEL): a multicentre, double-blind, randomised phase 3 trial. Lancet. 2014;384:665–73. https://doi.org/10.1016/S0140-6736(14)60845-X.

    Article  CAS  PubMed  Google Scholar 

  8. Herbst RS, Baas P, Kim DW, Felip E, Perez-Gracia JL, Han JY, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet. 2016;387:1540–50. https://doi.org/10.1016/S0140-6736(15)01281-7.

    Article  CAS  PubMed  Google Scholar 

  9. Rittmeyer A, Barlesi F, Waterkamp D, Park K, Ciardiello F, von Pawel J, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017;389:255–65. https://doi.org/10.1016/S0140-6736(16)32517-X.

    Article  PubMed  Google Scholar 

  10. Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373:1627–39. https://doi.org/10.1056/nejmoa1507643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brahmer J, Reckamp KL, Baas P, Crinò L, Eberhardt WEE, Poddubskaya E, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373:123–35. https://doi.org/10.1056/NEJMoa1504627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Planchard D, Popat S, Kerr K, Novello S, Smit EF, Faivre-Finn C, et al. Metastatic non-small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2018;29:iv192–237. https://doi.org/10.1093/annonc/mdy275.

    Article  CAS  PubMed  Google Scholar 

  13. Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375:1823–33. https://doi.org/10.1056/nejmoa1606774.

    Article  CAS  PubMed  Google Scholar 

  14. Herbst RS, Baas P, Kim D-W, Felip E, Pérez-Gracia JL, Han J-Y, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet. 2016;387:1540–50. https://doi.org/10.1016/S0140-6736(15)01281-7.

    Article  CAS  PubMed  Google Scholar 

  15. Garon EB, Hellmann MD, Rizvi NA, Carcereny E, Leighl NB, Ahn MJ, et al. Five-year overall survival for patients with advanced non-small-cell lung cancer treated with pembrolizumab: Results from the phase i KEYNOTE-001 study. J Clin Oncol. 2019;37:2518–27. https://doi.org/10.1200/JCO.19.00934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bodor JN, Boumber Y, Borghaei H. Biomarkers for immune checkpoint inhibition in non-small cell lung cancer (NSCLC). Cancer. 2020;126:260–70. https://doi.org/10.1002/cncr.32468.

    Article  CAS  PubMed  Google Scholar 

  17. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74. https://doi.org/10.1016/j.cell.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  18. Cedrés S, Torrejon D, Martínez A, Martinez P, Navarro A, Zamora E, et al. Neutrophil to lymphocyte ratio (NLR) as an indicator of poor prognosis in stage IV non-small cell lung cancer. Clin Transl Oncol. 2012;14:864–9. https://doi.org/10.1007/s12094-012-0872-5.

    Article  PubMed  Google Scholar 

  19. McMillan DC. The systemic inflammation-based Glasgow Prognostic Score: a decade of experience in patients with cancer. Cancer Treat Rev. 2013;39:534–40. https://doi.org/10.1016/j.ctrv.2012.08.003.

    Article  PubMed  Google Scholar 

  20. Mezquita L, Auclin E, Ferrara R, Charrier M, Remon J, Planchard D, et al. Association of the lung immune prognostic index with immune checkpoint inhibitor outcomes in patients with advanced non-small cell lung cancer. JAMA Oncol. 2018;4:351–7. https://doi.org/10.1001/jamaoncol.2017.4771.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Haanen JBAG, Carbonnel F, Robert C, Kerr KM, Peters S, Larkin J, et al. Management of toxicities from immunotherapy: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017;28:iv119–42. https://doi.org/10.1093/annonc/mdx225.

    Article  CAS  PubMed  Google Scholar 

  22. Herbst RS, Garon EB, Dong-Wan K, Cho BC, Perez-Gracia JL, Ji-Youn H, et al. Long-term outcomes and retreatment among patients with previously treated, programmed death-ligand 1-positive, advanced non-small-cell lung cancer in the KEYNOTE-010 study. J Clin Oncol. 2020;38:1580–91. https://doi.org/10.1200/JCO.19.02446.

    Article  CAS  PubMed  Google Scholar 

  23. Crinò L, Bidoli P, Delmonte A, Grossi F, De Marinis F, Ardizzoni A, et al. Italian cohort of nivolumab expanded access program in squamous non-small cell lung cancer: results from a real-world population. Oncologist. 2019;24: e1165. https://doi.org/10.1634/theoncologist.2018-0737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Debieuvre D, Juergens RA, Asselain B, Audigier-Valette C, Auliac J-B, Barlesi F, et al. Two-year survival with nivolumab in previously treated advanced non-small-cell lung cancer: a real-world pooled analysis of patients from France, Germany, and Canada. Lung Cancer. 2021;157:40–7. https://doi.org/10.1016/j.lungcan.2021.04.022.

    Article  PubMed  Google Scholar 

  25. Juergens RA, Mariano C, Jolivet J, Finn N, Rothenstein J, Reaume MN, et al. Real-world benefit of nivolumab in a Canadian non-small-cell lung cancer cohort. Curr Oncol. 2018;25:384–92. https://doi.org/10.3747/co.25.4287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Figueiredo A, Almeida MA, Almodovar MT, Alves P, Araújo A, Araújo D, et al. Real-world data from the Portuguese Nivolumab Expanded Access Program (EAP) in previously treated non small cell lung cancer (NSCLC). Pulmonology. 2020;26:10–7. https://doi.org/10.1016/j.pulmoe.2019.06.001.

    Article  CAS  PubMed  Google Scholar 

  27. Morita R, Okishio K, Shimizu J, Saito H, Sakai H, Kim YH, et al. Real-world effectiveness and safety of nivolumab in patients with non-small cell lung cancer: a multicenter retrospective observational study in Japan. Lung Cancer. 2020;140:8–18. https://doi.org/10.1016/j.lungcan.2019.11.014.

    Article  PubMed  Google Scholar 

  28. Lim SM, Kim SW, Cho BC, Kang JH, Ahn MJ, Kim DW, et al. Real-world experience of nivolumab in non-small cell lung cancer in Korea. Cancer Res Treat. 2020;52:1112–9. https://doi.org/10.4143/crt.2020.245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Velcheti V, Chandwani S, Chen X, Piperdi B, Burke T. Pembrolizumab for previously treated, PD-L1–expressing advanced NSCLC: real-world time on treatment and overall survival. Clin Lung Cancer. 2020;21:e445–55. https://doi.org/10.1016/j.cllc.2020.02.023.

    Article  CAS  PubMed  Google Scholar 

  30. Ratcliffe MJ, Sharpe A, Midha A, Barker C, Scott M, Scorer P, et al. Agreement between programmed cell death ligand-1 diagnostic assays across multiple protein expression cutoffs in non-small cell lung cancer. Clin Cancer Res. 2017;23:3585–91. https://doi.org/10.1158/1078-0432.CCR-16-2375.

    Article  CAS  PubMed  Google Scholar 

  31. Schvartsman G, Peng SA, Bis G, Lee JJ, Benveniste MFK, Zhang J, et al. Response rates to single-agent chemotherapy after exposure to immune checkpoint inhibitors in advanced non-small cell lung cancer. Lung Cancer. 2017;112:90–5. https://doi.org/10.1016/j.lungcan.2017.07.034.

    Article  PubMed  Google Scholar 

  32. Gobbini E, Toffart AC, Pérol M, Assié JB, Duruisseaux M, Coupez D, et al. Immune checkpoint inhibitors rechallenge efficacy in non-small-cell lung cancer patients. Clin Lung Cancer. 2020;21:e497-510. https://doi.org/10.1016/j.cllc.2020.04.013.

    Article  CAS  PubMed  Google Scholar 

  33. Gobbini E, Charles J, Toffart AC, Leccia MT, Moro-Sibilot D, Levra MG. Literature meta-analysis about the efficacy of re-challenge with PD-1 and PD-L1 inhibitors in cancer patients. Bull Cancer. 2020;107:1098–107. https://doi.org/10.1016/j.bulcan.2020.07.009.

    Article  PubMed  Google Scholar 

  34. Tumeh PC, Hellmann MD, Hamid O, Tsai KK, Loo KL, Gubens MA, et al. Liver metastasis and treatment outcome with anti-PD-1 monoclonal antibody in patients with melanoma and NSCLC. Cancer Immunol Res. 2017;5:417–24. https://doi.org/10.1158/2326-6066.CIR-16-0325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jenne CN, Kubes P. Immune surveillance by the liver. Nat Immunol. 2013;14:996–1006. https://doi.org/10.1038/ni.2691.

    Article  CAS  PubMed  Google Scholar 

  36. Kitadai R, Okuma Y, Hakozaki T, Hosomi Y. The efficacy of immune checkpoint inhibitors in advanced non-small-cell lung cancer with liver metastases. J Cancer Res Clin Oncol. 2020;146:777–85. https://doi.org/10.1007/s00432-019-03104-w.

    Article  CAS  PubMed  Google Scholar 

  37. Sorich MJ, Rowland A, Karapetis CS, Hopkins AM. Evaluation of the lung immune prognostic index for prediction of survival and response in patients treated with atezolizumab for NSCLC: pooled analysis of clinical trials. J Thorac Oncol. 2019;14(8):1440–6. https://doi.org/10.1016/j.jtho.2019.04.006.

    Article  CAS  PubMed  Google Scholar 

  38. Ruiz-Bañobre J, Areses-Manrique MC, Mosquera-Martínez J, Cortegoso A, Afonso-Afonso FJ, De Dios-Álvarez N, et al. Evaluation of the lung immune prognostic index in advanced nonsmall cell lung cancer patients under nivolumab monotherapy. Transl Lung Cancer Res. 2019;8:1078–85. https://doi.org/10.21037/tlcr.2019.11.07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kazandjian D, Gong Y, Keegan P, Pazdur R, Blumenthal GM. Prognostic value of the lung immune prognostic index for patients treated for metastatic non-small cell lung cancer. JAMA Oncol. 2019;5:1481–5. https://doi.org/10.1001/jamaoncol.2019.1747.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Blanc-Durand F, Auclin E, Planchard D, Aix SP, Hendriks L, Sullivan IG, et al. Association of lung immune prognostic index (LIPI) with survival of first line immune checkpoint inhibitors single agent or in combination with chemotherapy in untreated advanced NSCLC patients. Ann Oncol. 2019;30:xi5. https://doi.org/10.1093/annonc/mdz447.015.

    Article  Google Scholar 

  41. Mezquita L, Park W, Arbour K, Auclin E, Hendriks L, Planchard D, et al. Correlation of the Lung Immune Prognostic Index (LIPI) and PDL1 status with outcomes for immune checkpoint inhibitors in advanced NSCLC patients. J Thoracic Oncol. 2018;13(10S):P101-68. https://doi.org/10.1016/j.jtho.2018.08.624.

    Article  Google Scholar 

  42. Vuagnat P, Auclin E, Mezquita L, Alfonso JA, Tocino MRV, Munoz FL, et al. Applicability of the LIPI score to metastatic microsatellite instability high cancer patients treated with immune checkpoint inhibitors. Ann Oncol. 2019;30:ix20. https://doi.org/10.1093/ANNONC/MDZ449.008.

    Article  Google Scholar 

  43. Ribas A. Adaptive immune resistance: how cancer protects from immune attack. Cancer Discov. 2015;5:915–9. https://doi.org/10.1158/2159-8290.CD-15-0563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Velcheti V, Schalper KA, Carvajal DE, Anagnostou VK, Syrigos KN, Sznol M, et al. Programmed death ligand-1 expression in non-small cell lung cancer. Lab Investig. 2014;94:107–16. https://doi.org/10.1038/labinvest.2013.130.

    Article  CAS  PubMed  Google Scholar 

  45. Riedl JM, Barth DA, Foris V, Posch F, Mollnar S, Stotz M, et al. External validation and longitudinal extension of the LIPI (Lung Immune Prognostic Index) for immunotherapy outcomes in advanced non-small cell lung cancer. Ann Oncol. 2019;30: v514. https://doi.org/10.1093/ANNONC/MDZ253.088.

    Article  Google Scholar 

  46. Moor R, Roberts K, Mason R, Ladwa R, Lwin Z, Hughes B, et al. P1.01–119 Modified Lung Immune Prognostic Index (mLIPI) as a predictive tool of nivolumab outcomes in advanced NSCLC patients. J Thorac Oncol. 2019;14:S408–9. https://doi.org/10.1016/J.JTHO.2019.08.834.

    Article  Google Scholar 

  47. Park W, Kwon D, Saravia D, Desai A, Vargas F, El Dinali M, et al. Develo** a predictive model for clinical outcomes of advanced non-small cell lung cancer patients treated with nivolumab. Clin Lung Cancer. 2018;19:280.e4-288.e4. https://doi.org/10.1016/j.cllc.2017.12.007.

    Article  CAS  Google Scholar 

  48. Park W, Mezquita L, Okabe N, Chae YK, Kwon D, Saravia D, et al. Association of the prognostic model iSEND with PD-1/L1 monotherapy outcome in non-small-cell lung cancer. Br J Cancer. 2019;122:340–7. https://doi.org/10.1038/s41416-019-0643-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sorich MJ, Rowland A, Karapetis CS, Hopkins AM. Evaluation of the lung immune prognostic index for prediction of survival and response in patients treated with atezolizumab for NSCLC: pooled analysis of clinical trials. J Thorac Oncol. 2019;14:1440–6. https://doi.org/10.1016/j.jtho.2019.04.006.

    Article  CAS  PubMed  Google Scholar 

  50. Varga A, Bernard-Tessier A, Auclin E, Mezquita Pérez L, Baldini C, Planchard D, et al. Applicability of the lung immune prognostic index (LIPI) in patients with metastatic solid tumors when treated with immune checkpoint inhibitors (ICI) in early clinical trials. Ann Oncol. 2019;30:2.

    Article  Google Scholar 

  51. Meyers S, Vallerand L, Suo D, et al. The lung immune prognostic index discriminates survival outcomes in patients with solid tumors treated with immune checkpoint inhibitors. Cancers (Basel). 2019;11:1713. https://doi.org/10.3390/cancers11111713.

    Article  CAS  Google Scholar 

  52. Minami S, Ihara S, Komuta K. Pretreatment lung immune prognostic index is a prognostic marker of chemotherapy and epidermal growth factor receptor tyrosine kinase inhibitor. World J Oncol. 2019;10:35–45.

    Article  Google Scholar 

  53. Teraoka S, Fujimoto D, Morimoto T, Kawachi H, Ito M, Sato Y, et al. Early immune-related adverse events and association with outcome in advanced non-small cell lung cancer patients treated with nivolumab: a prospective cohort study. J Thorac Oncol. 2017;12:1798–805. https://doi.org/10.1016/j.jtho.2017.08.022.

    Article  PubMed  Google Scholar 

  54. Haratani K, Hayashi H, Chiba Y, Kudo K, Yonesaka K, Kato R, et al. Association of immune-related adverse events with nivolumab efficacy in non-small-cell lung cancer. JAMA Oncol. 2018;4:374–8. https://doi.org/10.1001/JAMAONCOL.2017.2925.

    Article  PubMed  Google Scholar 

  55. Socinski MA, Jotte RM, Cappuzzo F, Nishio M, Mok TSK, Reck M, et al. Pooled analyses of immune-related adverse events (irAEs) and efficacy from the phase 3 trials IMpower130, IMpower132, and IMpower150. J Clin Oncol. 2021;39:9002. https://doi.org/10.1200/JCO.2021.39.15_suppl.9002.

    Article  Google Scholar 

  56. Mielgo Rubio X, Gomez Rueda A, Antoñanzas M, Falagan S, Núñez JA, Sánchez Peña AM, et al. Applicability of lung immune prognostic index (LIPI) to predict efficacy of first-line pembrolizumab in advanced non-small cell lung cancer (NSCLC). Ann Oncol. 2019;30:v619–20. https://doi.org/10.1093/ANNONC/MDZ260.031.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaele Califano.

Ethics declarations

Funding

No external funding was used in the preparation of this manuscript.

Conflict of interest

F.B has received honoraria and consultancy fees from AstraZeneca, Jansen, Pfizer, Bayer, Roche Genentech, MSD. R.C has received honoraria and consultancy fees from MSD, AstraZeneca, Roche and Bristol Myers Squibb. Y.S is a member of the advisory board for MSD. A.O-F, C.H, H.R, C.L-S, M.C, P.T and S.H declare that they have no conflicts of interest that might be relevant to the contents of this manuscript.

Ethics approval

This study was approved by the ‘Quality Improvement and Clinical Audit’ committee at The Christie.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Authors' contributions

A.O-F: Conceptualization, Methodology, Formal analysis, Data Curation, Writing - Original Draft, Visualization. C.H: Methodology, Formal analysis. Writing - Review & Editing, Visualization. Haseem Raja: Data Curation, Visualization. R.C: Conceptualization, Methodology, Writing - Review & Editing, Supervision. C.L, F.B, L.C-S, M.C, P.T, S.H, Y.S: Writing - Review & Editing.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 434 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortega-Franco, A., Hodgson, C., Raja, H. et al. Real-World Data on Pembrolizumab for Pretreated Non-Small-Cell Lung Cancer: Clinical Outcome and Relevance of the Lung Immune Prognostic Index. Targ Oncol 17, 453–465 (2022). https://doi.org/10.1007/s11523-022-00889-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-022-00889-8

Navigation