Log in

Soft-tissue sound-speed-aware ultrasound-CT registration method for computer-assisted orthopedic surgery

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Ultrasound (US) has been introduced to computer-assisted orthopedic surgery for bone registration owing to its advantages of nonionizing radiation, low cost, and noninvasiveness. However, the registration accuracy is limited by US image distortion caused by variations in the acoustic properties of soft tissues. This paper proposes a soft-tissue sound-speed-aware registration method to overcome the above challenge. First, the feature enhancement strategy of multi-channel overlay is proposed for U2-net to improve bone segmentation performance. Secondly, the sound speed of soft tissue is estimated by simulating the bone surface distance map for the update of US-derived points. Finally, an iterative registration strategy is adopted to optimize the registration result. A phantom experiment was conducted using different registration methods for the femur and tibia/fibula. The fiducial registration error (femur, 0.98 ± 0.08 mm (mean ± SD); tibia/fibula, 1.29 ± 0.19 mm) and the target registration error (less than 2.11 mm) showed the high accuracy of the proposed method. The experimental results suggest that the proposed method can be integrated into navigation systems that provide surgeons with accurate 3D navigation information.

Graphical abstract

First, multi-channel input data including the original image, phase symmetric image, and depth weighted map are fused for U2-net model training in the automatic bone segmentation of US images. When US-derived points are obtained, the sound speed of soft tissue is estimated by simulating the bone surface distance map for the update of the locations of US-derived points. An iterative registration strategy based on the cost function of corresponding point distances is adopted to optimize the registration result. Finally, a gold-standard transformation based on artificial fiducials is constructed for method evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Stübig T, Windhagen H, Krettek C, Ettinger M (2020) Computer-assisted orthopedic and trauma surgery. Deutsches Arzteblatt Int 117(47):793–800. https://doi.org/10.3238/arztebl.2020.0793

    Article  Google Scholar 

  2. Petursson G, Fenstad AM, Gøthesen Ø, Dyrhovden GS, Hallan G, Röhrl SM, Aamodt A, Furnes O (2018) Computer-assisted compared with conventional total knee replacement: a multicenter parallel-group randomized controlled trial. J Bone Joint Surg Am Vol 100(15):1265–1274. https://doi.org/10.2106/JBJS.17.01338

    Article  Google Scholar 

  3. Lilly RJ, Koueiter DM, Graner KC, Nowinski GP, Sadowski J, Grant KD (2018) Computer-assisted navigation for intramedullary nail fixation of intertrochanteric femur fractures: a randomized, controlled trial. Injury 49(2):345–350. https://doi.org/10.1016/j.injury.2017.12.006

    Article  PubMed  Google Scholar 

  4. Richter M (2013) Computer aided surgery in foot and ankle: applications and perspectives. Int Orthop 37(9):1737–1745. https://doi.org/10.1007/s00264-013-1922-5

    Article  PubMed  PubMed Central  Google Scholar 

  5. Honl M, Dierk O, Gauck C, Carrero V, Lampe F, Dries S, Quante M, Schwieger K, Hille E, Morlock MM (2003) Comparison of robotic-assisted and manual implantation of a primary total hip replacement. a prospective study. J Bone Joint Surg Am Vol 85(8):1470–1478. https://doi.org/10.2106/00004623-200308000-00007

    Article  Google Scholar 

  6. Nogler M, Maurer H, Wimmer C, Gegenhuber C, Bach C, Krismer M (2001) Knee pain caused by a fiducial marker in the medial femoral condyle: a clinical and anatomic study of 20 cases. Acta Orthop Scand 72(5):477–480. https://doi.org/10.1080/000164701753532808

    Article  CAS  PubMed  Google Scholar 

  7. Gong RH, Stewart J, Abolmaesumi P (2011) Multiple-object 2-D-3-D registration for noninvasive pose identification of fracture fragments. IEEE Trans Biomed Eng 58(6):1592–1601. https://doi.org/10.1109/TBME.2011.2105487

    Article  PubMed  Google Scholar 

  8. Nakajima Y, Tashiro T, Sugano N, Yonenobu K, Koyama T, Maeda Y, Tamura Y, Saito M, Tamura S, Mitsuishi M, Sugita N, Sakuma I, Ochi T, Matsumoto Y (2007) Fluoroscopic bone fragment tracking for surgical navigation in femur fracture reduction by incorporating optical tracking of hip joint rotation center. IEEE Trans Biomed Eng 54(9):1703–1706. https://doi.org/10.1109/TBME.2007.900822

    Article  PubMed  Google Scholar 

  9. Livyatan H, Yaniv Z, Joskowicz L (2003) Gradient-based 2-D/3-D rigid registration of fluoroscopic X-ray to CT. IEEE Trans Med Imaging 22(11):1395–1406. https://doi.org/10.1109/TMI.2003.819288

    Article  PubMed  Google Scholar 

  10. Sanctorum J, Van Wassenbergh S, Aerts P, Dirckx J (2020) Technical note: correction of geometric x-ray image intensifier distortion based on digital image correlation. Med Phys 47(2):597–603. https://doi.org/10.1002/mp.13944

    Article  PubMed  Google Scholar 

  11. Otake Y, Armand M, Armiger RS, Kutzer MD, Basafa E, Kazanzides P, Taylor RH (2012) Intraoperative image-based multiview 2D/3D registration for image-guided orthopaedic surgery: incorporation of fiducial-based C-arm tracking and GPU-acceleration. IEEE Trans Med Imaging 31(4):948–962. https://doi.org/10.1109/TMI.2011.2176555

    Article  PubMed  Google Scholar 

  12. Patil S, Lindley EM, Burger EL, Yoshihara H, Patel VV (2012) Pedicle screw placement with O-arm and stealth navigation. Orthopedics 35(1):e61–e65. https://doi.org/10.3928/01477447-20111122-15

    Article  PubMed  Google Scholar 

  13. Ikuma H, Hirose T, Takao S, Otsuka K, Kawasaki K (2020) The usefulness and safety of the simultaneous parallel anterior and posterior combined lumbar spine surgery using intraoperative 3D fluoroscopy-based navigation (SPAPS). North Am Spine Soc J 5:100047. https://doi.org/10.1016/j.xnsj.2020.100047

    Article  Google Scholar 

  14. Kotsianos D, Wirth S, Fischer T, Euler E, Rock C, Linsenmaier U, Pfeifer KJ, Reiser M (2004) 3D imaging with an isocentric mobile C-arm comparison of image quality with spiral CT. Eur Radiol 14(9):1590–1595. https://doi.org/10.1007/s00330-004-2316-2

    Article  PubMed  Google Scholar 

  15. Gueziri HE, Santaguida C, Collins DL (2020) The state-of-the-art in ultrasound-guided spine interventions. Med Image Anal 65:101769. https://doi.org/10.1016/j.media.2020.101769

    Article  PubMed  Google Scholar 

  16. Noble JA, Navab N, Becher H (2011) Ultrasonic image analysis and image-guided interventions. Interface focus 1(4):673–685. https://doi.org/10.1098/rsfs.2011.0025

    Article  PubMed  PubMed Central  Google Scholar 

  17. Penney GP, Edwards PJ, King AP, Blackall JM, Batchelor PG, Hawkes DJ (2001) A stochastic iterative closest point algorithm (stochastICP). In: Niessen WJ, Viergever MA (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2001. Lecture Notes in Computer Science, vol 2208. Springer, Berlin, Heidelberg, pp 762–769

  18. Wein W, Karamalis A, Baumgartner A, Navab N (2015) Automatic bone detection and soft tissue aware ultrasound-CT registration for computer-aided orthopedic surgery. Int J Comput Assist Radiol Surg 10(6):971–979. https://doi.org/10.1007/s11548-015-1208-z

    Article  PubMed  Google Scholar 

  19. Brounstein A, Hacihaliloglu I, Guy P, Hodgson A, Abugharbieh R (2015) Fast and accurate data extraction for near real-time registration of 3-D ultrasound and computed tomography in orthopedic surgery. Ultrasound Med Biol 41(12):3194–3204

    Article  PubMed  Google Scholar 

  20. Niu K, Homminga J, Sluiter VI, Sprengers A, Verdonschot N (2018) Feasibility of A-mode ultrasound based intraoperative registration in computer-aided orthopedic surgery: a simulation and experimental study. PLoS one 13(6):e0199136. https://doi.org/10.1371/journal.pone.0199136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ciganovic M, Ozdemir F, Pean F, Fuernstahl P, Tanner C, Goksel O (2018) Registration of 3D freehand ultrasound to a bone model for orthopedic procedures of the forearm. Int J Comput Assist Radiol Surg 13(6):827–836. https://doi.org/10.1007/s11548-018-1756-0

    Article  PubMed  Google Scholar 

  22. Fanti Z, Torres F, Hazan-Lasri E, Gastelum-Strozzi A, Ruiz-Huerta L, Caballero-Ruiz A, Cosío FA (2018) Improved surface-based registration of CT and intraoperative 3D ultrasound of bones. J Healthc Eng 2018:2365178. https://doi.org/10.1155/2018/2365178

    Article  PubMed  PubMed Central  Google Scholar 

  23. Schneider U, Pedroni E, Lomax A (1996) The calibration of CT Hounsfield units for radiotherapy treatment planning. Phys Med Biol 41(1):111–124. https://doi.org/10.1088/0031-9155/41/1/009

    Article  CAS  PubMed  Google Scholar 

  24. Robinson DE, Ophir J, Wilson LS, Chen CF (1991) Pulse-echo ultrasound speed measurements: progress and prospects. Ultrasound Med Biol 17(6):633–646. https://doi.org/10.1016/0301-5629(91)90034-t

    Article  CAS  PubMed  Google Scholar 

  25. Barratt DC, Penney GP, Chan CS, Slomczykowski M, Carter TJ, Edwards PJ, Hawkes DJ (2006) Self-calibrating 3D-ultrasound-based bone registration for minimally invasive orthopedic surgery. IEEE Trans Med Imaging 25(3):312–323. https://doi.org/10.1109/TMI.2005.862736

    Article  PubMed  Google Scholar 

  26. Penney GP, Barratt DC, Chan CS, Slomczykowski M, Carter TJ, Edwards PJ, Hawkes DJ (2006) Cadaver validation of intensity-based ultrasound to CT registration. Med Image Anal 10(3):385–395. https://doi.org/10.1016/j.media.2006.01.003

    Article  CAS  PubMed  Google Scholar 

  27. Schumann S, Nolte LP, Zheng G (2011) Compensation of sound speed deviations in 3-D B-mode ultrasound for intraoperative determination of the anterior pelvic plane. IEEE Trans Inf Technol Biomed 16(1):88–97. https://doi.org/10.1109/TITB.2011.2170844

    Article  PubMed  Google Scholar 

  28. Tang S, Yang X, Shajudeen P, Sears C, Taraballi F, Weiner B, Tasciotti E, Dollahon D, Park H, Righetti R (2021) A CNN-based method to reconstruct 3-D spine surfaces from US images in vivo. Med Image Anal 74:102221. https://doi.org/10.1016/j.media.2021.102221

    Article  PubMed  Google Scholar 

  29. Qin X, Zhang Z, Huang C, Dehghan M, Jagersand M (2020) U2-Net: going deeper with nested U-structure for salient object detection. Pattern Recog 106:107404. https://www.sciencedirect.com/science/article/pii/S0031320320302077, https://doi.org/10.1016/j.patcog.2020.107404. Accessed 2020/10/01

  30. Hacihaliloglu I, Abugharbieh R, Hodgson AJ, Rohling RN (2009) Bone surface localization in ultrasound using image phase-based features. Ultrasound Med Biol 35(9):1475–1487. https://doi.org/10.1016/j.ultrasmedbio.2009.04.015

    Article  PubMed  Google Scholar 

  31. Cook RL (1984) Shade trees. In: Proceedings of the 11th Annual Conference on Computer Graphics and Interactive Techniques. Association for Computing Machinery, New York, USA, pp 223–231. https://doi.org/10.1145/800031.808602

  32. Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 3431–3440

  33. Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. Medical image computing and computer-assisted intervention-MICCAI 2015: 18th International Conference. Munich, Germany, pp 234–241

    Google Scholar 

  34. Shajudeen PMS, Righetti R (2017) Spine surface detection from local phase-symmetry enhanced ridges in ultrasound images. Med Phys 44(11):5755–5767

    Article  CAS  PubMed  Google Scholar 

  35. Martin K, Spinks D (2001) Measurement of the speed of sound in ethanol/water mixtures. Ultrasound Med Biol 27(2):289–291. https://doi.org/10.1016/s0301-5629(00)00331-8

    Article  CAS  PubMed  Google Scholar 

  36. Wang P, Patel VM, Hacihaliloglu I (2018) Simultaneous segmentation and classification of bone surfaces from ultrasound using a multi-feature guided CNN. In Med Image Comput Comput Assist Interv–MICCAI 2018: 21st Int Conf, Granada, Spain, September 16–20, 2018, Proceedings, Part IV 11 134–142. https://doi.org/10.1007/978-3-030-00937-3_16

  37. Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7(4):308–313. https://doi.org/10.1093/comjnl/7.4.308

    Article  Google Scholar 

  38. Alsinan AZ, Patel VM, Hacihaliloglu I (2019) Automatic segmentation of bone surfaces from ultrasound using a filter-layer-guided CNN. Int J Comput Assist Radiol Surg 14(5):775–783. https://doi.org/10.1007/s11548-019-01934-0

  39. Villa M, Dardenne G, Nasan M, Letissier H, Hamitouche C, Stindel E (2018) FCN-based approach for the automatic segmentation of bone surfaces in ultrasound images. Int J Comput Assist Radiol Surg 13:1707–1716. https://doi.org/10.1007/s11548-018-1856-x

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was partly supported by the by Tian** Science and Technology Planning Project under Grant 20201193.

Author information

Authors and Affiliations

Authors

Contributions

Chuanba Liu, and Tao Sun contributed equally to research design, analysis of data, and drafting of the manuscript. Yimin Song contributed equally to critical revisions of the manuscript as well as approval of the final submission. All authors have read and approved the final submitted manuscript.

Corresponding author

Correspondence to Tao Sun.

Ethics declarations

Ethics approval and consent to participate

This article used anonymous data from an existing collection of CT scans and does not contain any studies with human participants performed by any of the authors. Informed consent for this type of study is not required.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Wang, W., Sun, T. et al. Soft-tissue sound-speed-aware ultrasound-CT registration method for computer-assisted orthopedic surgery. Med Biol Eng Comput (2024). https://doi.org/10.1007/s11517-024-03123-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11517-024-03123-x

Keywords

Navigation