Log in

A quasi-realistic computational model development and flow field study of the human upper and central airways

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The impact of drug delivery and particulate matter exposure on the human respiratory tract is influenced by various anatomical and physiological factors, particularly the structure of the respiratory tract and its fluid dynamics. This study employs computational fluid dynamics (CFD) to investigate airflow in two 3D models of the human air conducting zone. The first model uses a combination of CT-scan images and geometrical data from human cadaver to extract the upper and central airways down to the ninth generation, while the second model develops the lung airways from the first Carina to the end of the ninth generation using Kitaoka’s deterministic algorithm. The study examines the differences in geometrical characteristics, airflow rates, velocity, Reynolds number, and pressure drops of both models in the inhalation and exhalation phases for different lobes and generations of the airways. From trachea to the ninth generation, the average air flowrates and Reynolds numbers exponentially decay in both models during inhalation and exhalation. The steady drop is the case for the average air velocity in Kitaoka’s model, while that experiences a maximum in the 3rd or 4th generation in the quasi-realistic model. Besides, it is shown that the flow field remains laminar in the upper and central airways up to the total flow rate of 15 l/min. The results of this work can contribute to the understanding of flow behavior in upper respiratory tract.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Agujetas R, Barrio-Perotti R, Ferrera C, Pandal-Blanco A, Walters DK, Fernández-Tena A (2020) Construction of a hybrid lung model by combining a real geometry of the upper airways and an idealized geometry of the lower airways. Comput Methods Programs Biomed 196:105613. https://doi.org/10.1016/j.cmpb.2020.105613

    Article  CAS  PubMed  Google Scholar 

  2. Augusto L, Gonçalves J, Lopes G (2016) CFD evaluation of the influence of physical mechanisms, particle size, and breathing condition on the deposition of particulates in a triple bifurcation airway. Water Air Soil Pollut 227:1–13. https://doi.org/10.3390/atmos11020137

    Article  CAS  Google Scholar 

  3. Aykac D, Hoffman EA, McLennan G, Reinhardt JM (2003) Segmentation and analysis of the human airway tree from three-dimensional X-ray CT images. IEEE Trans Med Imaging 22:940–950. https://doi.org/10.3182/20090812-3-DK-2006.0051

    Article  PubMed  Google Scholar 

  4. Barnes PJ, Blasi F, Ward B, Reeves E, Rabe KF (2014) Respiratory diseases in the world: one voice “united for lung health.” Eur Respir J 43:3–5. https://doi.org/10.1183/09031936.00202613

    Article  PubMed  Google Scholar 

  5. Chen X, Zhong W, Sun B, ** B, Zhou X (2012) Study on gas/solid flow in an obstructed pulmonary airway with transient flow based on CFD–DPM approach. Powder Technol 217:252–260. https://doi.org/10.1016/j.powtec.2011.10.034

    Article  CAS  Google Scholar 

  6. Chen X, Zhong W, Zhou X, ** B, Sun B (2012) CFD–DEM simulation of particle transport and deposition in pulmonary airway. Powder Technol 228:309–318. https://doi.org/10.1016/j.powtec.2012.05.041

    Article  CAS  Google Scholar 

  7. Dastan A, Abouali O, Ahmadi G (2014) CFD simulation of total and regional fiber deposition in human nasal cavities. J Aerosol Sci 69:132–149. https://doi.org/10.1016/J.JAEROSCI.2013.12.008

    Article  CAS  Google Scholar 

  8. Dong J, Li J, Tian L, Tu J (2021) Transport and deposition of ultrafine particles in the upper tracheobronchial tree: a comparative study between approximate and realistic respiratory tract models. Comput Methods Biomech Biomed Engin 24:1125–1135. https://doi.org/10.1080/10255842.2020.1869220

    Article  PubMed  Google Scholar 

  9. Feng Y, Kleinstreuer C (2014) Micron-particle transport, interactions and deposition in triple lung-airway bifurcations using a novel modeling approach. J Aerosol Sci 71:1–15. https://doi.org/10.1016/j.jaerosci.2014.01.003

    Article  CAS  Google Scholar 

  10. Fluent A (2016) ANSYS Fluent User’s Guide, Ansys Inc

  11. Fresconi F, Wexler A, Prasad A (2003) Expiration flow in a symmetric bifurcation. Exp Fluids 35:493–501. https://doi.org/10.1007/S00348-003-0713-Y

    Article  Google Scholar 

  12. Gemci T, Ponyavin V, Chen Y, Chen H, Collins R (2008) Computational model of airflow in upper 17 generations of human respiratory tract. J Biomech 41:2047–2054. https://doi.org/10.1016/j.jbiomech.2007.12.019

    Article  CAS  PubMed  Google Scholar 

  13. Ghahramani E, Abouali O, Emdad H, Ahmadi G (2014) Numerical analysis of stochastic dispersion of micro-particles in turbulent flows in a realistic model of human nasal/upper airway. J Aerosol Sci 67:188–206. https://doi.org/10.1016/j.jaerosci.2013.09.004

    Article  CAS  Google Scholar 

  14. Ghalati PF, Keshavarzian E, Abouali O, Faramarzi A, Tu J, Shakibafard A (2012) Numerical analysis of micro-and nano-particle deposition in a realistic human upper airway. Comput Biol Med 42:39–49. https://doi.org/10.1016/j.compbiomed.2011.10.005

    Article  Google Scholar 

  15. Horsfield K, Dart G, Olson DE, Filley GF, Cumming G (1971) Models of the human bronchial tree. J Appl Physiol 31:207–217. https://doi.org/10.1152/jappl.1971.31.2.207

    Article  CAS  PubMed  Google Scholar 

  16. Hyatt RE, Wilcon RE (1963) The pressure-flow relationships of the intrathoracic airway in man. J Clin Investig 42:29–39. https://doi.org/10.1172/jci104693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kakade PP, Mishchiy N, Annapragada AV (2003) Computational fluid dynamics simulation of airflow and aerosol deposition in human lungs. Ann Biomed Eng 31:374–390. https://doi.org/10.1114/1.1560632

    Article  PubMed  Google Scholar 

  18. Kiasadegh M, Emdad H, Ahmadi G, Abouali O (2019) Transient numerical simulation of airflow and fibrous particles in a human upper airway model. J Aerosol Sci 140:105480. https://doi.org/10.1016/j.jaerosci.2019.105480

    Article  CAS  Google Scholar 

  19. Kim CS, Fisher DM (1999) Deposition characteristics of aerosol particles in sequentially bifurcating airway models. Aerosol Sci Technol 31:198–220. https://doi.org/10.1080/027868299304255

    Article  CAS  Google Scholar 

  20. Kim CS, Iglesias AJ (1989) Deposition of inhaled particles in bifurcating airway models: I. Inspiratory deposition. J Aerosol Med 2:1–14. https://doi.org/10.1089/JAM.1989.2.1

    Article  Google Scholar 

  21. Kim CS, Iglesias AJ, Garcia L (1989) Deposition of inhaled particles in bifurcating airway models: II. Expiratory deposition. J Aerosol Med 2:15–27

    Article  Google Scholar 

  22. Kim Y, Tong Z, Chan H, Yang R (2019) CFD modelling of air and particle flows in different airway models. J Aerosol Sci 134:14–28. https://doi.org/10.1016/j.jaerosci.2019.04.015

    Article  CAS  Google Scholar 

  23. Kitaoka H, Koc S, Tetsumoto S, Koumo S, Hirata H, Kijima T (2013) 4D model generator of the human lung,“Lung4Cer”. 35th Annu Int Conf IEEE Eng Med Biol Soc 453–456. https://doi.org/10.1109/EMBC.2013.6609534

  24. Kitaoka H, Takaki R, Suki B (1999) A three-dimensional model of the human airway tree. J Appl Physiol 87:2207–2217. https://doi.org/10.1152/jappl.1999.87.6.2207

    Article  CAS  PubMed  Google Scholar 

  25. Kleinstreuer C, Zhang Z (2010) Airflow and particle transport in the human respiratory system. Annu Rev Fluid Mech 42:301–334. https://doi.org/10.1146/annurev-fluid-121108-145453

    Article  Google Scholar 

  26. Kobashi S, Kuramoto K, Hata Y (2011) Functional assessment of individual lung lobes with MDCT images. Theory Appl CT Imaging Anal 95:106. https://doi.org/10.5772/15627

    Article  Google Scholar 

  27. Koullapis P, Hofemeier P, Sznitman J, Kassinos SC (2018) An efficient computational fluid-particle dynamics method to predict deposition in a simplified approximation of the deep lung. Eur J Pharm Sci 113:132–144. https://doi.org/10.1016/j.ejps.2017.09.016

    Article  CAS  PubMed  Google Scholar 

  28. Li Z (2012) Particle deposition in oral-tracheal airway models with very low inhalation profiles. J Bionic Eng 9:252–261. https://doi.org/10.1016/S1672-6529(11)60106-6

    Article  Google Scholar 

  29. Longest PW, Holbrook LT (2012) In silico models of aerosol delivery to the respiratory tract—development and applications. Adv Drug Deliv Rev 64:296–311. https://doi.org/10.1016/j.addr.2011.05.009

    Article  CAS  PubMed  Google Scholar 

  30. Longest PW, Vinchurkar S (2007) Validating CFD predictions of respiratory aerosol deposition: effects of upstream transition and turbulence. J Biomech 40:305–316. https://doi.org/10.1016/j.jbiomech.2006.01.006

    Article  Google Scholar 

  31. Martin AR, Katz IM, Terzibachi K, Gouinaud L, Caillibotte G, Texereau J (2012) Bench and mathematical modeling of the effects of breathing a helium/oxygen mixture on expiratory time constants in the presence of heterogeneous airway obstructions. Biomed Eng Online 11:1–15. https://doi.org/10.1186/1475-925X-11-27

    Article  Google Scholar 

  32. Naseri A, Abouali O, Ghalati PF, Ahmadi G (2014) Numerical investigation of regional particle deposition in the upper airway of a standing male mannequin in calm air surroundings. Comput Biol Med 52:73–81. https://doi.org/10.1016/j.compbiomed.2014.06.007

    Article  PubMed  Google Scholar 

  33. Naseri A, Shaghaghian S, Abouali O, Ahmadi G (2017) Numerical investigation of transient transport and deposition of microparticles under unsteady inspiratory flow in human upper airways. Respir Physiol Neurobiol 244:56–72. https://doi.org/10.1016/j.resp.2017.06.005

    Article  CAS  PubMed  Google Scholar 

  34. Nowak N, Kakade PP, Annapragada AV (2003) Computational fluid dynamics simulation of airflow and aerosol deposition in human lungs. Ann Biomed Eng 31:374–390. https://doi.org/10.1114/1.1560632

    Article  PubMed  Google Scholar 

  35. Phuong NL, Ito K (2015) Investigation of flow pattern in upper human airway including oral and nasal inhalation by PIV and CFD. Build Environ 94:504–515. https://doi.org/10.1016/j.buildenv.2015.10.002

    Article  Google Scholar 

  36. Raabe OG, Yeh HC, Schum GM, Phalen RF (1976) Tracheobronchial geometry: human, dog, rat, hamster: a compilation of selected data from the project respiratory tract deposition models. US Energy Research and Development Administration, Division of Biomedical and Environmental Research. https://digital.library.unt.edu/ark:/67531/metadc100754/

  37. Rahiminejad M, Haghighi A, Dastan A, Abouali O, Farid M, Ahmadi G (2016) Computer simulations of pressure and velocity fields in a human upper airway during sneezing. Comput Biol Med 71:115–127. https://doi.org/10.1016/j.compbiomed.2016.01.022

    Article  PubMed  Google Scholar 

  38. Sauret V, Halson P, Brown I, Fleming J, Bailey A (2002) Study of the three-dimensional geometry of the central conducting airways in man using computed tomographic (CT) images. J Anat 200:123–134. https://doi.org/10.1046/j.0021-8782.2001.00018.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schmidt A, Zidowitz S, Kriete A, Denhard T, Krass S, Peitgen H-O (2004) A digital reference model of the human bronchial tree. Comput Med Imaging Graph 28:203–211. https://doi.org/10.1016/j.compmedimag.2004.01.001

    Article  PubMed  Google Scholar 

  40. Shachar-Berman L et al (2020) In silico optimization of fiber-shaped aerosols in inhalation therapy for augmented targeting and deposition across the respiratory tract. Pharmaceutics 12:230. https://doi.org/10.3390/pharmaceutics12030230

    Article  PubMed  PubMed Central  Google Scholar 

  41. Shang Y, Dong J, Tian L, Inthavong K, Tu J (2019) Detailed computational analysis of flow dynamics in an extended respiratory airway model. Clin Biomech 61:105–111. https://doi.org/10.1016/j.clinbiomech.2018.12.006

    Article  Google Scholar 

  42. Soni B, Aliabadi S (2013) Large-scale CFD simulations of airflow and particle deposition in lung airway. Comput Fluids 88:804–812. https://doi.org/10.1016/j.compfluid.2013.06.015

    Article  Google Scholar 

  43. Sung KH, Ryou HS (2012) Numerical analysis on the flow characteristics considering the inspiratory flow rate in a human airway. J Biomed Eng Res 33:177–183. https://doi.org/10.9718/JBER.2012.33.4.177

    Article  Google Scholar 

  44. Tian G, Hindle M, Lee S, Longest PW (2015) Validating CFD predictions of pharmaceutical aerosol deposition with in vivo data. Pharm Res 32:3170–3187. https://doi.org/10.1007/s11095-015-1695-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Weibel ER, Cournand AF, Richards DW (1963) Morphometry of the human lung. Springer

    Book  Google Scholar 

  46. ** J, Longest PW, Martonen TB (2008) Effects of the laryngeal jet on nano-and microparticle transport and deposition in an approximate model of the upper tracheobronchial airways. J Appl Physiol 104:1761–1777. https://doi.org/10.1152/japplphysiol.01233.2007

    Article  PubMed  Google Scholar 

  47. Yeh H-C, Hulbert A, Phalen R, Velasquez D, Harris TD (1975) A stereoradiographic technique and its application to the evaluation of lung casts. Invest Radiol 10:351–357. https://doi.org/10.1097/00004424-197507000-00010

    Article  CAS  PubMed  Google Scholar 

  48. Yeh H-C, Schum G (1980) Models of human lung airways and their application to inhaled particle deposition. Bull Math Biol 42:461–480. https://doi.org/10.1016/S0092-8240(80)80060-7

    Article  CAS  PubMed  Google Scholar 

  49. Yeh H, Phalen R, Raabe O (1976) Factors influencing the deposition of inhaled particles. Environ Health Perspect 15:147–156. https://doi.org/10.1289/ehp.7615147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang Z, Kleinstreuer C (2003) Low-Reynolds-number turbulent flows in locally constricted conduits: a comparison study. AIAA J 41(5):831–840. https://doi.org/10.2514/2.2044

    Article  Google Scholar 

  51. Zhang Z, Kleinstreuer C (2003) Species heat and mass transfer in a human upper airway model. Int J Heat Mass Transf 46:4755–4768. https://doi.org/10.1016/S0017-9310(03)00358-2

    Article  Google Scholar 

  52. Zhang Z, Kleinstreuer C (2004) Airflow structures and nano-particle deposition in a human upper airway model. J Comput Phys 198:178–210. https://doi.org/10.1016/j.jcp.2003.11.034

    Article  Google Scholar 

  53. Zhang Z, Kleinstreuer C, Donohue JF, Kim C (2005) Comparison of micro-and nano-size particle depositions in a human upper airway model. J Aerosol Sci 36:211–233. https://doi.org/10.1016/j.jaerosci.2004.08.006

    Article  CAS  Google Scholar 

  54. Zhang Z, Kleinstreuer C, Kim C (2001) Effects of curved inlet tubes on air flow and particle deposition in bifurcating lung models. J Biomech 34:659–669. https://doi.org/10.1016/s0021-9290(00)00233-5

    Article  CAS  PubMed  Google Scholar 

  55. Zhang Z, Kleinstreuer C, Kim C (2001) Flow structure and particle transport in a triple bifurcation airway model. J Fluids Eng 123:320–330. https://doi.org/10.1115/1.1359525

    Article  CAS  Google Scholar 

  56. Zhu Z, Zhang C, Zhang L (2019) Experimental and numerical investigation on inspiration and expiration flows in a three-generation human lung airway model at two flow rates. Respir Physiol Neurobiol 262:40–48. https://doi.org/10.1016/j.resp.2019.01.012

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

OA proposed the idea and designed the main theme of the research. MRR produced the computational models, performed the simulations, reported the results for discussion, and prepared a draft manuscript. AD re-designed the manuscript structure and was a major contributor to writing it. All authors equally contributed to the discussions and drew appropriate conclusions. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Sasan Sadrizadeh or Omid Abouali.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezazadeh, M.R., Dastan, A., Sadrizadeh, S. et al. A quasi-realistic computational model development and flow field study of the human upper and central airways. Med Biol Eng Comput (2024). https://doi.org/10.1007/s11517-024-03117-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11517-024-03117-9

Keywords

Navigation