Log in

New concept of contaminant removal from swine wastewater by a biological treatment process

  • Review
  • Published:
Frontiers of Biology in China

Abstract

Pollution from concentrated animal feeding operations (CAFOs) are the most serious pollution source in China now, and swine wastewater contains high concentrations of nutrients such as chemical oxygen demand (COD), biochemical oxygen demand 5 (BOD5), ammonium, and emergent contaminants related to public health. Biological processes are the most popular treatment methods for COD and ammonium removal. Considering the low operation cost, easy maintenance and high removal rate of contaminants in recent years, nitrogen removal via nitrite and real-time control processes using oxidation-reduction potential (ORP) and/or pH as parameters to control the aerobic and anaerobic cycles of a system has received much attention for animal wastewater treatment. During the biological treatment process, the emergent contaminants such as estrogen, antibiotics, and disinfection reagents have been the focus of research recently, and degradation bacteria and resistance bacteria have also been extracted from activated sludge. The microbial analysis technique is also advancement in the field of biodegradation bacteria and resistance bacteria. All of these advancements in research serve to improve wastewater treatment and decrease environmental hazards, especially for using manure as a fertilizer source for crop production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alaton A, Dogruel S, Baykal E, Gerone G (2004). Combined chemical and biological oxidation of penicillin formulation effluent. Journal of Environmental Management, 73: 155–163

    Article  PubMed  Google Scholar 

  • Anderson I C, Poth M, Homstead J, Burdige D (1993). A comparison of NO and N2O production by the autotrophic nitrifier nitrosomonas europaea and the heterotrophic nitrifier Alcaligenes faecalis. Applied Environmental Microbiology, 59: 3525–3534

    CAS  Google Scholar 

  • Arslan A, Dogruel S, Baykal E, Gerone G (2004). Combined chemical and biological oxidation of penicillin formulation effluent. Journal of Environmental Management, 73: 155–163

    Article  Google Scholar 

  • Auriol M, Rajeshwar Y, Tyagi D, Craig D, Rao Y (2006). Surampalli Endocrine disrupting compounds removal from wastewater, a new challenge. Process Biochemistry, 41(3): 525–539

    Article  CAS  Google Scholar 

  • Ben W W, Qiang Z M, Adams C, Zhang H Q, Chen L P (2008). Simultaneous determination of sulfonamides, tetracyclines and tiamulin in swine wastewater by solid-phase extraction and liquid chromatography-mass spectrometry. Journal of Chromatography A, 1202: 173–180

    Article  CAS  PubMed  Google Scholar 

  • Brown K D, Kulis J, Thomson B, Chapman T H, Mawhinney D B (2006). Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico. Science of Total Environment, 366: 772–783

    Article  CAS  Google Scholar 

  • Campagnolo E R, Rubin C S (1998). Report to the state of Iowa Department of Public Health on the investigation of the chemical and microbial constituents of ground and surface water proximal to large-scale swine operations. National Center for Environmental Health Centers for Disease Control and Prevention

  • Carballa M, Omila F, Lema J M, Llompart M, Garballa-Jares C, Isaac R, Mariano G, Thomas T (2004). Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Research, 38: 2918–2926

    Article  CAS  PubMed  Google Scholar 

  • Chapentier J, Martin G, Wacheux H, Gilles P (1998). ORP regulation and activated sludge: 15 years of experience. Water Science and Technology, 38(3): 197–208

    Article  Google Scholar 

  • Chelliapan S, Wilby T, Sallis P (2006). Performance of an up-flow anaerobic stage reactor (UASR) in the treatment of pharmaceutical wastewater containing macrolide antibiotics. Water Research, 40(3): 507–516

    Article  CAS  PubMed  Google Scholar 

  • Chen K C, Chen C Y, Peng JW, Houng J Y (2002). Real-time control of an immobilized-cell reactor for wastewater treatment using ORP. Water Research, 36: 230–238

    Article  CAS  PubMed  Google Scholar 

  • Chen M X, Kim J H, Kishida N, Nishimura O, Sudo R (2004). Enhanced nitrogen removal using C/N load adjustment and real-time control strategy in sequencing batch reactors for swine wastewater treatment. Water Science and Technology, 49(5,6): 309–314

    CAS  PubMed  Google Scholar 

  • Cheng N, Lo K V, Yip K H (2000). Swine wastewater treatment in a two stage sequencing batch reactor using real-time control. Journal of Environmental Science and Health B, 35(3): 379–398

    Article  CAS  Google Scholar 

  • Choi K, Kim S, Kim C, Kim S (2007). Determination of antibiotic compounds in water by on-line SPE-LC/MSD. Chemosphere, 66: 977–984

    Article  CAS  PubMed  Google Scholar 

  • Czajka C, Londry K (2006). Anaerobic biotransformation of estrogens. Science of The Total Environment, 367( 2,3): 932–941

    Article  CAS  PubMed  Google Scholar 

  • Czepiel P, Crill P, Harris R (1995). Nitrous oxide emissions from municipal wastewater treatment. Environmental Science and Technology, 29: 2352–2356

    Article  CAS  Google Scholar 

  • Escher B I, Pronk W, Suter M J F, Maurer M (2006). Monitoring the removal efficiency of pharmaceuticals and hormones in different treatment processes of source-separated urine with bioassays. Environmental Science and Technology, 40: 5091–5101

    Google Scholar 

  • Fuerhacker M, Bauer H, Ellinger R, Sree U, Schmid H, Zibuschka F, Puxbaum H (2000). Water Research, 34(9): 2499–2506

    Article  CAS  Google Scholar 

  • Fujii K, Kikuchi S, Satomi M, Ushio-sata N, Morita N (2002). Degradation of 17-β-Estradiol by a gram-negative bacterium isolated from activated sludge in a sewage treatment plant in Tokyo, Japan. Applied Environmental Microbiology, 68: 2057–2060

    Article  CAS  Google Scholar 

  • Furuichi T, Kannan K, Suzuki K, Tanaka S, Giesy J P, Masunaga S (2006). Occurrence of estrogenic compounds in and removal by a swine farm waste treatment plant. Environmental Science and Technology, 40: 7896–7902

    Article  CAS  PubMed  Google Scholar 

  • Gobel A, McArdell C S, Joss A, Siegrist H, Giger W (2006). Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies. Science of the Total Environment, 372(2,3): 361–371

    PubMed  Google Scholar 

  • Guardabassi L, Wong A, Dalsgaard A (2002). The effects of tertiary wastewater treatment on the prevalence of antimicrobial resistant bacteria. Water Research, 36: 1955–1964

    Article  CAS  PubMed  Google Scholar 

  • Hanaki K, Hong Z, Matsuo T (1992). Production of nitrous oxide gas during denitrification of wastewater. Water Science and Technology, 26: 1027–1036

    CAS  Google Scholar 

  • Hellinga C, Schellen A, Mulder JW, van LoosdrechtMC M, Heijnen J J (1998). The Sharon process: an innovative method for nitrogen removal from ammonium-rich wastewater. Water Science and Technology, 37(9): 135–142

    Article  CAS  Google Scholar 

  • Humenik F (2005). Lesson 25: Manure Treatment Options, LPES curriculums. Available at: http://www.lpes.org/Lessons/Lesson25/25_Manure_Treatment.html

  • Hutchins S R, White M V, Hudson F M, Fine D D (2007). Analysis of lagoon samples from different concentrated animal feeding operations for estrogens and estrogen conjugates. Environmental Science and Technology, 41: 738–744

    Article  CAS  PubMed  Google Scholar 

  • Inamori Y, Sudo R, Goda T (1986). Domestic sewage treatment using an anaerobic biofilter with an aerobic biofilter. Water Science and Technology, 18: 209–216

    CAS  Google Scholar 

  • Inamori Y, Wu X L, Mizuochi M (1997). N2O producing capability of nitrosomonas europaea, nitrobacter winogradskyi and alcaligenes faecalis. Water Science and Technology, 36: 65–72

    Article  CAS  Google Scholar 

  • IPCC (1995). Climate Change 1994: Radiative Forcing of Climate Change. Cambridge: Cambridge University Press, 32–43

    Google Scholar 

  • IPCC (1996). Climate Change 1995: The Science of Climate Change. Cambridge: Cambridge University Press, 15–16

    Google Scholar 

  • Itokawa H, Hanaki K, Matsuo T (1996). Nitrous oxide emission during nitrification and denitrification in a full scale night soil treatment plant. Water Science and Technology, 34: 277–284

    Article  CAS  Google Scholar 

  • Jenicek P, Svehla P, Zabranska J, Dohanyos (2003). Factors Affecting Nitrogen Removal by Nitritation/Denitritation. In: Proceedings of Strong N and Agro 2003, IWA Specially Symposium on Strong Nitrogenous and Agro-wastewater. Seoul, Korea

  • John C, Robert L (1985). Nitrogen removal in a low-loaded single tank sequencing batch reactor. Journal of the Water Pollution Control Federation, 57(1): 82–86

    Google Scholar 

  • Johnson A C, Sumpter J P (2001). Removal of endocrine-disrupting chemicals in activated sludge treatment works. Environmental Science and Technology, 35(24): 4697–4703

    Article  CAS  PubMed  Google Scholar 

  • Joss A, Andersen H, Ternes T, Richle P R, Siegrist H (2004). Removal of estrogens in municipal wastewater treatment under aerobic and anaerobic conditions: consequences for plant optimization. Environmental Science and Technology, 38(11): 3047–3055

    Article  CAS  PubMed  Google Scholar 

  • Khalil M A K, Rasmussen R A (1992). The global source of nitrous oxide. Journal of Geophysical Research, 97: 14651–14660

    Google Scholar 

  • Khanal S K, **e B, Thompson M L, Sung S, Ong S K, Leeuwen J V (2006). Fate, transport, and biodegradation of natural estrogens in the environment and engineered systems. Environmental Science and Technology, 40(21): 6537–6545

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Hao O J (2001). pH and oxidation-reduction potential control strategy for optimization of nitrogen removal in an alternating aerobic-anoxic system. Water Environmental Research, 73(1): 95–102

    Article  CAS  Google Scholar 

  • Kim J H, Chen M X, Kishida N, Sudo R (2004). Integrated real-time control strategy of nitrogen removal for swine wastewater treatment using sequencing batch reactors. Water Research, 38(14,15): 3340–3348

    Article  CAS  PubMed  Google Scholar 

  • Kim S, James N J, Diana S A, Weber A S (2007). Tetracycline as a selector for resistant bacteria in activated sludge. Chemosphere, 66: 1643–1651

    Article  CAS  PubMed  Google Scholar 

  • Kimochi Y, Inamori Y, Mizuochi M, Matsumura M (1998). Nitrogen removal and N2O emission in a full-scale domestic wastewater treatment plant with intermittent aeration. Journal of Fermentation and Bioengineering, 86: 202–206

    Article  CAS  Google Scholar 

  • Kishida N, Kim J H, Chen M X, Sasaki H, Sudo R (2003). Effectiveness of ORP and pH as monitoring and control parameters for nitrogen removal in swine wastewater treatment by sequencing batch reactors. Journal of Biosciences and Bioengineering, 96(3): 285–209

    CAS  Google Scholar 

  • Koivunen J, Siitonenb A, Heinonen-Tanskia H (2003). Elimination of enteric bacteria in biological-chemical wastewater treatment and tertiary filtration units. Water Research, 37: 690–698

    Article  CAS  PubMed  Google Scholar 

  • Lee S I, Koopman B, Park S K, Cadee K (1995). Effect of fermented wasters on denitrification in activated sludge. Water Environmental Research, 67(7): 1119–1122

    Article  CAS  Google Scholar 

  • Lee S I, Park J H, Ko K B, Koopman B (1997). Effect of fermented swine wasters on biological nutrient removal in sequencing batch reactors. Water Science and Technology, 31(7): 1807–1812

    CAS  Google Scholar 

  • Li F, Yuasa A, Obara A, Mathews A P (2005). Aerobic batch degradation of 17-β estradiol (E2) by activated sludge: effects of spiking E2 concentration, MLVSS and temperatures. Water Research, 39: 2065–2075

    Article  CAS  PubMed  Google Scholar 

  • Li F S, He Y L, Tang Q J, Obara A, Mathews A P (2003). Study on biodegradation characteristics of 17β- estradiol (E2). China Water & Wastewater, 19(6): 9–12

    Google Scholar 

  • Lo C K, Yu C W, Tam N F Y, Trayor S (1994). Enhanced nutrient removal by oxidation-reduction potential (ORP) controlled aeration in a laboratory scale extended aeration treatment system. Water Research, 28(10): 2087–2094

    Article  CAS  Google Scholar 

  • Meyer M, Ferrell G, Bumgarner J, Cole D, Hutchins S, Krapac I, Johnson K, Verstraeten I, Kolpin D (2003). Occurrence of antibiotics in hog-waste lagoons from confined animal feeding operations from 1998-2002: Indicators of antibiotic usage. In: 3rd International Conference on Pharmaceuticals and Endocrine Disrupting Chemicals in Water, Minneapolis, MN, USA. 95

  • Mosquera-Corral A, Gonzalez F, Campos J L, Mendez R (2005). Partial nitrification in a SHARON reactor in the presence of salts and organic carbon compounds. Process Biochemistry, 40(9): 3109–3118

    Article  CAS  Google Scholar 

  • NEPA (2002). Pollution Investigation of CAFOs in 2000 years in China (in Chinese). Bei**g, China: Chinese Environmental Science Press

    Google Scholar 

  • Osada T, Kuroda K, Yonaga M (1995). Reducing nitrous oxide gas emissions from fill and draw type activated sludge process. Water Research, 29: 1607–1608

    Article  CAS  Google Scholar 

  • Plisson-Saune S, Capdeville B, Mauret M, Deguin A, Baptiste P (1996). Real-time control of nitrogen removal using three ORP bending points: signification, control strategy and results. Water Science and Technology, 33(1): 275–280

    Article  CAS  Google Scholar 

  • Ra C S, Lo K V, Mavinic D S (1998). Real-time control of two-stage sequencing batch reactor system for the treatment of animal wastewater. Environmental Technology, 19: 343–356

    Article  CAS  Google Scholar 

  • Ra C S, Lo K V, Mavinic D S (1999). Control of a swine manure treatment process using a specific feature of oxidation reduction potential. Bioresource Technology, 70: 117–127

    Article  CAS  Google Scholar 

  • Ra C S, Lo K V, Shin J S, Oh J S, Hong B J (2000). Biological nutrient removal with an internal organic carbon source in piggery wastewater treatment. Water Research, 34(3): 965–973

    Article  CAS  Google Scholar 

  • Raman D R, Williams E L, Layton A C, Burns RT, Easter J P, Daugherty A S, Mullen M D, Sayler G S (2004). Estrogen content of dairy and swine wastes. Environmental Science and Technology, 38(13): 3567–3573

    Article  CAS  PubMed  Google Scholar 

  • Ren Y, Nakano K, Nomura M, Chiba N, Nishimura O (2007). Effects of bacterial activity on estrogen removal in nitrifying activated sludge, Water Research, 41(14): 3089–3096

    Article  CAS  PubMed  Google Scholar 

  • Sarmah A K, Northcott G L, Leusch F D L, Tremblay L A (2006). A survey of endocrine disrupting chemicals (EDCs) in municipal sewage and animal waste effluents in the Waikato region of New Zealand. Science of The Total Environment, 355(1–3): 135–144

    Article  CAS  PubMed  Google Scholar 

  • Schulthess R D, Gujer W (1996). Release of nitrous oxide (N2O) from denitrifying activated sludge: verification and application of a mathematical model. Water Research, 30: 521–530

    Article  Google Scholar 

  • Schulthess R D, Wild D, Gujer W (1994). Nitric and nitrous oxides from denitrifying activated sludge at low oxygen concentration. Water Science and Technology, 30: 123–132

    CAS  Google Scholar 

  • Schwartz T, Kohnen W, Jansen B, Obst U (2003). Detection of antibiotic-resistant bacteria and their resistance genes in wastewater, surface water, and drinking water biofilms. FEMS Microbiology Ecology, 43(3): 325–335

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Fujisawa S, Nakai S, Hosomi M (2004). Biodegradation of natural and synthetic estrogens by nitrifying activated sludge and ammoniaoxidizing bacterium Nitrosomonas europaea. Water Research, 38(9): 2323–2330

    Article  CAS  Google Scholar 

  • Shreeshivadasan C, Thomas W, Paul J S (2006). Performance of an upflow anaerobic stage reactor (UASR) in the treatment of pharmaceutical wastewater containing macrolide antibiotics. Water Research, 40: 507–516

    Article  Google Scholar 

  • Sophie D, David L (2006). Biodegradation of estrone and 17 β-estradiol in grassland soils amended with animal wastes. Soil Biology and Biochemistry, 38( 9): 2803–2815

    Article  Google Scholar 

  • Stephen R H, Mark V W, Felisa M H, Dennis D F (2007). Analysis of lagoon samples from different concentrated animal feeding operations for estrogens and estrogen conjugates. Environmental Science and Technology, 41: 738–744

    Article  Google Scholar 

  • Tashiro Y, Takemura A, Fujii H, Takahira K, Nakanishi Y (2003). Livestock wastes as a source of estrogens and their effects on wildlife of Manko tidal flat, Okinawa. Marine Pollution Bulletin, 47: 143–147

    Article  CAS  PubMed  Google Scholar 

  • Thomas S, Wolfgang K, Bernd J, Ursula O (2003). Detection of antibiotic-resistant bacteria and their resistance genes in wastewater, surface water, and drinking water biofilms. FEMS Microbiology Ecology, 43: 325–335

    Article  Google Scholar 

  • Tilche A, Bortone G, Malaspina F, Piccinini S, Stante L (2001). Biological nutrient removal in a full-scale SBR treatment piggery wastewater: results and modeling. Water Science and Technology, 43(3): 363–371

    CAS  PubMed  Google Scholar 

  • Travis A, Hanselman A, Graetz D, Wilkie C (2003). Manure-borne estrogens as potential environmental contaminants: A review. Environmental Science and Technology, 37(24): 5471-547

    Google Scholar 

  • Umehara T, Yamamoto M (1986). Advanced treatment of domestic wastewater using intermittent aeration process. Journal of Water and Waste, 28: 1220–1227 (in Japanese)

    CAS  Google Scholar 

  • Ummerera K K, Al-Ahmada A, Mersch-Sundermannb V (2000). Biodegradability of some antibiotics, elimination of the genotoxicity and affection of wastewater bacteria in a simple test. Chemosphere, 40: 701–710

    Article  Google Scholar 

  • Vader JS, van Ginkel CG, Sperling FM, de Jong J, de Boer W, de Graaf JS, van der Most M, Stokman PG (2000). Degradation of ethinyl estradiol by nitrifying activated sludge. Chemosphere 41: 1239–1243

    Article  CAS  PubMed  Google Scholar 

  • van der Star W R L, Abma W R, Dennis B, Mulder J-W, Tokutomi T, Strous M, Picioreanu C, van Loosdrecht M C M (2007). Startup of reactors for anoxic ammonium oxidation: Experiences from the first full-scale anammox reactor in Rotterdam. Water Research, 41(18): 4149–4163

    Article  PubMed  Google Scholar 

  • Wang K J (2004). Pollution control technology and policy of CAFOs. Bei**g: Chemical Industry Press, 2–92

    Google Scholar 

  • Wang S Y, Gao D W, Peng Y Z, Wang P, Yang Q (2003). Nitrificationdenitrification via nitrite for nitrogen removal from high nitrogen soybean wastewater with on-line fuzzy control. In: Proceedings of Strong N and Agro 2003, IWA Specially Symposium on Strong Nitrogenous and Agro-wastewater. Seoul, Korea

  • Watanabe Y, Masuda S, Ishiguro M (1992). Simultaneous nitrification and denitrification in micro-aerobic biofilms. Water Science and Technology, 26: 511–522

    CAS  Google Scholar 

  • WHO (2007). Sodium dichloroisocyanurate in drinking-water. Available at: www.who.int

  • Williams E L (2002). Survey of estrogen concentrations in dairy and swine waste holding and treatment structures in and around Tennessee. MS thesis. University of Tennessee, Knoxville, USA

    Google Scholar 

  • Wu X L, Kong H L, Mizuochi M, Inamori, Y, Huang X, Qian Y (1995). Nitrous oxide emission from microorganisms. Japanese Journal of Water Treatment Biology, 31: 151–160

    Google Scholar 

  • Yamamoto T, Takaki K, Koyama T, Furukawa K (2008). Long-term stability of partial nitritation of swine wastewater digester liquor and its subsequent treatment by Anammox. Bioresource Technology, 99(14): 6419–6425

    Article  CAS  PubMed  Google Scholar 

  • Yoshimoto T, Nagai F, Fujimoto J, Watanabe K, Mizukoshi H, Makino T, Kimura K, Saino H, Sawada H, Omura H (2004). Degradation of estrogens by Rhodococcus zopfil and Rhodococcus equi isolated from activated sludge in wastewater treatment plants. Applied Environmental Microbiology, 70: 5283–5289

    Article  CAS  Google Scholar 

  • Yu C P, Roh H, Chu K H (2007). 17-β-estradiol-degrading bacteria isolated from activated sludge. Environmental Science and Technology, 41: 486–492

    Article  CAS  PubMed  Google Scholar 

  • Yu H, **g H, Chen Z, Zheng H, Zhu X, Wang H (2006). Human Streptococcus suis outbreak, Sichuan, China. Emerging Infectious Diseases, 12: 914–920

    PubMed  Google Scholar 

  • Yun Z, Jung Y, Lim B-R, Choi E, Min K (2003). The stability of nitrite nitrification with strong nitrogenous wastewater: Effects of organic concentration and microbial diversity. In: Proceedings of Strong N and agro 2003, IWA Special Symposium on Strong Nitrogenous and Agro-wastewater. Seoul, Korea

  • Zheng H, Hanaki K, Matsuo T (1994). Production of nitrous oxide gas during nitrification of wastewater. Water Science and Technology, 30: 133–141

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meixue Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, M., Qi, R., An, W. et al. New concept of contaminant removal from swine wastewater by a biological treatment process. Front. Biol. China 4, 402–413 (2009). https://doi.org/10.1007/s11515-009-0042-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-009-0042-5

Keywords

Navigation