Log in

Mössbauer spectroscopy with high velocity resolution in the meteorites study

  • Electrical and Magnetic Properties
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The results of the study of various meteorites (iron, ordinary chondrites and carbonaceous chondrites) by Mössbauer spectroscopy with high velocity resolution at room temperature are presented. Different Fe(Ni,Co) phases in a metal component and spectral components that are related to structurally nonequivalent M1 and M2 positions in olivine and pyroxene have been revealed in the spectra of eleven ordinary chondrites as a result of a velocity-resolution increase. The spectra of two types of iron phosphides (rhabdite and schreibersite) extracted from the Sikhote-Alin iron meteorite have been measured for the first time, a difference in the magnetic hyperfine structure of 57Fe nuclei in the rhabdite and the schreibersite has been observed, and a preliminary estimation of their parameters has been made. The measured-for-the-first-time Mössbauer CH/CB spectra of the Isheevo chondrite demonstrated some differences between the internal and surface parts of the meteorite. The parameters obtained allowed us to detect the presence of three Fe(Ni,Co) phases in the Isheevo metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Jarosewich, “Chemical Analyses of Meteorites: A Compilation of Stony and Iron Meteorite Analyses,” Meteor. Planet. Sci. 25, 323–337 (1990).

    Google Scholar 

  2. E. de Grave, R. M. Persoons, R. E. Vandenberghe, and P M. A. de Bakker, “Mossbauer Study of the High-Temperature Phase of Co-Substituted Magnetites, CoxFe3−x O4. I. x ≤ 0.04,” Phys. Rev. B: 47, 5881–5893 (1993).

    Article  Google Scholar 

  3. S. M. Irkaev, V. V. Kupriyanov, V. A. Semionkin, and M. M. Sokolov, “Method of Registration of Nuclear Resonance,” British Patent, No. 10 745 (1978).

    Google Scholar 

  4. M. E. Vahonin, S. M. Irkaev, V. V. Kupriyanov, and V. A. Semionkin, “Spectrometer de Mössbauer,” French Patent, No. 8 708 228, 1988.

    Google Scholar 

  5. M. E. Vahonin, S. M. Irkaev, V. V. Kupriyanov, and V. A. Semionkin, “Mössbauer Spectrometer,” British Patent, No. 871294 (1988).

    Google Scholar 

  6. S. M. Irkaev, V. V. Kupriyanov, V. A. Semionkin, and M. M. Sokolov, “Method of Gamma-Ray Resonance Spectroscopy,” British Patent, No. 2 204 385 (1990).

    Google Scholar 

  7. Y A. Abdu and T. Ericsson, “Mössbauer Spectroscopy, X-ray Diffraction, and Electron Microprobe Analysis of the New Halfa Meteorite,” Meteor. Planet. Sci. 32, 373–375 (1997).

    Article  Google Scholar 

  8. R. A. Dunlap, “A Mössbauer Effect Investigation of the Enstatite Chondrite from Abee, Canada,” Hyperfine Interact. 110, 209–215 (1997).

    Article  Google Scholar 

  9. H. C. Verma, A. Rawat, B. S. Paliwal, and R. P. Tripathi, “Mössbauer Spectroscopic Studies of an Oxidized Ordinary Chondrite Fallen at Itawa-Bhopji, India,” Hyperfine Interact. 142, 643–652 (2002).

    Article  Google Scholar 

  10. E. V Zhiganova, M. I. Oshtrakh, O. B. Milder, et al., “Mössbauer Spectroscopy of Ordinary Chondrites: An Analysis of the Metal Phases,” Hyperfine Interact. 166, 665–670 (2005).

    Article  Google Scholar 

  11. E. V Zhiganova, V. I. Grokhovsky, and M. I. Oshtrakh, “Study of Ordinary Chondrites by Mössbauer Spectroscopy with High Velocity Resolution: Identification of M1 and M2 Sites in Silicate Phases,” Phys. Status Solidi A 204, 1185–1191 (2007).

    Article  Google Scholar 

  12. M. Morozov, C. Brinkmann, and M. Grodzicki, “Octahedral Cation Partitioning in Mg,Fe2+-Olivine. Mössbauer Spectroscopic Study of Synthetic (Mg0.5Fe25 )2SiO4 (Fa50),” Hyperfine Interact. 166, 573–578 (2005).

    Article  Google Scholar 

  13. M. Morozov, C. Brinkmann, W. Lottermoser, et al., “Octahedral Cation Partitioning in Mg,Fe2+-Olivine. Mössbauer Spectroscopic Study of Synthetic (Mg0.5Fe 2+0.5 )2SiO4 (Fa50),” Eur. J. Mineral. 17, 495–500 (2005).

    Article  Google Scholar 

  14. M. P Pasternak, R. D. Taylor, R. Jeanloz, and S. R. Bohlen, “Magnetic Ordering Transition in Mg0.9Fe0.1SiO3 Orthopyroxene,” Am. Mineral. 77, 901–903 (1992).

    Google Scholar 

  15. A. van Alboom, E. de Grave, and R. E. Vandenberghe, “Study of the Temperature Dependence of the Hyperfine Parameters in Two Orthopyroxenes by 57 Fe Mössbauer Spectroscopy,” Phys. Chem. Minerals 20, 263–275 (1993).

    Article  Google Scholar 

  16. S. G. Eeckhout, E. De Grave, C. A. McCammon, and R. Vochten, “Temperature Dependence of the Hyperfine Parameters of Synthetic P21/c Mg-Fe Clinopyroxenes along the MgSiO3-FeSiO3 Join,” Am. Mineral. 85, 943–952 (2000).

    Google Scholar 

  17. L. Wang, N. Moon, Y. Zhang, et al., “Fe-Mg Order-Disorder in Orthopyroxenes,” Geochim. Cosmochim. Acta 69, 5777–5788 (2005).

    Article  Google Scholar 

  18. M. I. Oshtrakh, O. B. Milder, V. I. Grokhovsky, and V. A. Semionkin, “Hyperfine Interactions in Iron Meteorites: Comparative Study by Mössbauer Spectroscopy,” Hyperfine Interact. 158, 365–375 (2004).

    Article  Google Scholar 

  19. E. Lisher, C. Wilkinson, T. Ericsson, et al., “Study of the Magnetic Structure of Fe3P,” in Proc. of the Int. Conf. on Magnetism 1973, vol. IV (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  20. P J. Ouseph, H. E. Groskreutz, and A. A. Johnson, “Mössbauer Spectra for Iron Bearing Phases in the Meteorite Toluca,” Meteoritics 14, 97–108 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.I. Grokhovsky, E.V. Zhiganova, M.Yu. Larionov, K.A. Uymina, M.I. Oshtrakh, 2008, published in Fizika Metallov i Metallovedenie, 2008, Vol. 105, No. 2, pp. 189–200.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grokhovsky, V.I., Zhiganova, E.V., Larionov, M.Y. et al. Mössbauer spectroscopy with high velocity resolution in the meteorites study. Phys. Metals Metallogr. 105, 177–187 (2008). https://doi.org/10.1007/s11508-008-2010-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11508-008-2010-8

PACS numbers

Navigation