Log in

GST-Based Surface Plasmon Resonance Reconfigurable Biosensor for Detection of Human Sperm

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, we propose a tunable surface plasmon resonance (SPR) biosensor using a phase change chalcogenide material (Ge2Sb2Te5) by the transfer matrix method for the detection of human sperm samples. The growing challenge in natural reproduction lies in the heightened infertility of human sperm, attributed to fluctuations in environmental factors. Effectively tackling these concerning aspects requires the utilization of advanced computer-aided devices. However, the precision of such devices, particularly when dealing with low concentrations of sperm, is not meeting the required standards. The proposed SPR biosensor comprises layers of Ag, BaTiO3, and GST for sperm detection. Achieving tunable and improved refractive index sensing along with a substantial figure of merit (FOM) is accomplished by transitioning the structural phase of GST from amorphous to crystalline. The sensing performances are assessed based on sensitivity, quality factor, detection accuracy, and FOM at a wavelength of 633 nm. The average angular sensitivity achieved is 236 deg/RIU for the crystalline phase and 286 deg/RIU for the amorphous phase, respectively. This sensitivity is observed within the dynamic range of refractive index (RI) spanning from 1.33 to 1.3461 RIU. The performance of our proposed SPR biosensor surpasses that of other reported works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo

    Book  Google Scholar 

  2. Endriz JG, Spicer WE (1970) Surface-plasmon-one-electron decay and its observation in photoemission. Phys Rev Lett 24(2):64

    Article  CAS  Google Scholar 

  3. Otto A (1968) Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik A Hadrons and nuclei 216(4):398–410

    Article  CAS  Google Scholar 

  4. Kretschmann E, Raether H (1968) Radiative decay of non radiative surface plasmons excited by light. Zeitschrift für Naturforschung A 23(12):2135–2136

    Article  CAS  Google Scholar 

  5. Kretschmann EJOC (1972) The angular dependence and the polarisation of light emitted by surface plasmons on metals due to roughness. Optics Communications 5(5):331–336

    Article  Google Scholar 

  6. Ritchie RH, Arakawa ET, Cowan JJ, Hamm RN (1968) Surface-plasmon resonance effect in grating diffraction. PhysRev Lett 21(22):1530

    Article  CAS  Google Scholar 

  7. Raether H (2006) Surface plasmons on gratings. Surface plasmons on smooth and rough surfaces and on gratings. 91–116

  8. Kumar A, Yadav AK, Kushwaha AS, Srivastava SK (2020) A comparative study among WS2, MoS2 and graphene based surface plasmon resonance (SPR) sensor. Sens Actuators Rep 2(1):100015

    Article  Google Scholar 

  9. Aly AH, Awasthi SK, Mohamed AM, Al-Dossari M, Matar ZS, Mohaseb MA, Abd El-Gawaad NS, Amin AF (2021) 1D reconfigurable bistable photonic device composed of phase change material for detection of reproductive female hormones. Physica Scripta 96(12):125533

    Article  Google Scholar 

  10. Hosseini P, Wright CD, Bhaskaran H (2014) An optoelectronic framework enabled by low-dimensional phase-change films. Nature 511(7508):206–211

    Article  CAS  PubMed  Google Scholar 

  11. Du KK, Li Q, Lyu YB, Ding JC, Lu Y, Cheng ZY, Qiu M (2017) Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST. Light Sci Appl 6(1):e16194–e16194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang Q, Rogers ET, Gholipour B, Wang CM, Yuan G, Teng J, Zheludev NI (2016) Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat Photonics 10(1):60–65

    Article  CAS  Google Scholar 

  13. Ohta T (2001) Phase-change optical memory promotes the DVD optical disk. J Optoelectron Adv Mater 3(3):609–626

    CAS  Google Scholar 

  14. Yamada N, Kojima R, Uno M, Akiyama T, Kitaura H, Narumi K, Nishiuchi K (2002) Phase-change material for use in rewritable dual-layer optical disk. In Optical data storage 2001, vol 4342. SPIE, pp 55–63

    Chapter  Google Scholar 

  15. Kuwahara M, Takehara S, Kashihara Y, Watabe K, Nakano T, Tanaka M, Nakamura N, Ohsawa H, Satoh H (2003) Experimental study of high-density rewritable optical disk using a blue-laser diode. Jpn J Appl Phys 42(2S):1068

    Article  CAS  Google Scholar 

  16. Tathfif Infiter, Hassan Md Farhad, Rashid Kazi Sharmeen, Yaseer Ahmad Azuad, Sagor Rakibul Hasan (2022) A highly sensitive plasmonic refractive index sensor based on concentric triple ring resonator for cancer biomarker and chemical concentration detection. Opt Commun 519:128429

    Article  CAS  Google Scholar 

  17. Zhang SW, Zhang BP, Li S, Li XY, Huang ZC (2016) SPR enhanced photocatalytic properties of Au-dispersed amorphous BaTiO3 nanocomposite thin films. J Alloy Compd 654:112–119

    Article  CAS  Google Scholar 

  18. Farhad Hassan Md, Tathfif Infiter, Radoan Mohammed, Sagor Rakibul Hasan (2020) A concentric double-ring resonator based plasmonic refractive index sensor with glucose sensing capability. In 2020 IEEE region 10 conference (TENCON). IEEE, pp 91–96

    Google Scholar 

  19. Kumar A, Kumar A, Srivastava SK (2022) A study on surface plasmon resonance biosensor for the detection of CEA biomarker using 2D materials graphene, Mxene and MoS. Optik 258:168885

    Article  CAS  Google Scholar 

  20. Pandey PS, Raghuwanshi SK, Singh R, Kumar S (2023) Surface plasmon resonance biosensor chip for human blood groups identification assisted with silver-chromium-hafnium oxide. Magnetochemistry 9(1):21

    Article  CAS  Google Scholar 

  21. Seyedeh Bita Saadatmand (2023) Mohammad Javad Haji Najafi Chemerkouh. Vahid Ahmadi, and Seyedeh Mehri Hamidi, Graphene-based integrated plasmonic sensor with application in biomolecule detection, Journal of the Optical Society of America B 40(1):1–10

    Google Scholar 

  22. Chemerkouh MJ, Saadatmand SB, Hamidi SM (2022) Ultra-high-sensitive biosensor based on SrTiO 3 and two-dimensional materials: ellipsometric concepts. Opt Mater Express 12(7):2609–2622

    Article  CAS  Google Scholar 

  23. Saadatmand SB, Chemerkouh MJHN, Ahmadi V, Hamidi SM (2023) Design and analysis of highly sensitive plasmonic sensor based on two-dimensional inorganic Ti-MXene and SrTiO 3 interlayer. IEEE Sens J 23(12):12727–12735

    Article  CAS  Google Scholar 

  24. Lotti F, Maggi M (2018) Sexual dysfunction and male infertility. Nat Rev Urol 15(5):287–307

    Article  PubMed  Google Scholar 

  25. R Ferraresi SR, AS Lara L, de Sa M FS, R Reis M, A Rosa e Silva CJS (2013) Current research on how infertility affects the sexuality of men and women. Recent Pat Endocr Metab Immune Drug Discov 7(3):198–202

    Article  CAS  PubMed  Google Scholar 

  26. AS Lara L, P Salomao B, A Romao PMS, R Reis M, P Navarro A, AC Rosa-e-Silva JS, R Ferriani A (2015) Effect of infertility on the sexual function of couples: state of the art. Recent Pat Endocr Metab Immune Drug Discov 9(1):46–53

    Article  CAS  PubMed  Google Scholar 

  27. Bechoua S, Hamamah S, Scalici E (2016) Male infertility: an obstacle to sexuality? Andrology 4(3):395–403

    Article  CAS  PubMed  Google Scholar 

  28. Krausz C (2011) Male infertility: pathogenesis and clinical diagnosis. Best Pract Res Clin Endocrinol Metab 25(2):271–285

    Article  PubMed  Google Scholar 

  29. Lotti F, Corona G, Krausz CG, Forti G, Maggi M (2012) The infertile male-3: endocrinological evaluation. Scrotal Pathol 5(3):223–240

    Google Scholar 

  30. Marci R, Graziano A, Piva I, Lo Monte G, Soave I, Giugliano E, Mazzoni S et al (2012) Procreative sex in infertile couples: the decay of pleasure? Health Qual Life Outcomes 10:1–7

    Article  Google Scholar 

  31. Hurwitz MB (1989) Sexual dysfunction associated with infertility’ A comparison of sexual function during the fertile and the non-fertile phase of the menstrual cycle. S Afr Med J 76(1):58–61

    CAS  PubMed  Google Scholar 

  32. Tathfif I, Yaseer AA, Rashid KS, Sagor RH (2021) Metal-insulator-metal waveguide-based optical pressure sensor embedded with arrays of silver nanorods. Opt express 29(20):32365–32376

    Article  CAS  PubMed  Google Scholar 

  33. David Mortimer, Mortimer Sharon T (2013) Computer-aided sperm analysis (CASA) of sperm motility and hyperactivation. Spermatogenesis Methods Protocol 927:77–87

    Article  Google Scholar 

  34. Tomlinson M, Turner J, Powell G, Sakkas D (2001) One-step disposable chambers for sperm concentration and motility assessment: how do they compare with the World Health Organization’s recommended methods? Hum Reprod 16(1):121–124

    Article  CAS  PubMed  Google Scholar 

  35. Chowdary MV, Kumar KK, Kurien J, Mathew S, Krishna CM (2006) Discrimination of normal, benign, and malignant breast tissues by Raman spectroscopy. Biopol Orig Res Biomol 83(5):556–569

    CAS  Google Scholar 

  36. Liu F, Zhu Y, Liu Y, Wang X, ** P, Zhu X, Hongliang Hu, Li Z, He L (2013) Real-time Raman microspectroscopy scanning of the single live sperm bound to human zona pellucida. Fertil Steril 99(3):684–689

    Article  PubMed  Google Scholar 

  37. Ahmed K, Ahmed F, Roy S, Paul BK, Aktar MN, Vigneswaran D, Islam MS (2019) Refractive index-based blood components sensing in terahertz spectrum. IEEE Sens J 19(9):3368–3375

    Article  CAS  Google Scholar 

  38. Rashid KS, Hassan MF, Yaseer AA, Tathfif I, Sagor RH (2021) Gas-sensing and label-free detection of biomaterials employing multiple rings structured plasmonic nanosensor. Sens BioSensing Res 33:100440

    Article  Google Scholar 

  39. Singh S, Upadhyay A, Chaudhary B, Sirohi K, Kumar S (2023) Enhanced Cu-Ni-TiO 2-BP plasmonic biosensor for highly sensitive biomolecule detection and SARS-CoV-2 Diagnosis. IEEE Sens J 24(1):254–261

    Article  Google Scholar 

  40. Jabin MA, Ahmed K, Rana MJ, Paul BK, Luo Y, Vigneswaran D (2019) Titanium-coated dual-core D-shaped SPR-based PCF for hemoglobin sensing. Plasmonics 14(6):1601–1610

    Article  CAS  Google Scholar 

  41. Newton MI, Atherton S, Morris RH, Stanley SM, Evans CR, Hughes DC, McHale G (2010) Low-cost QCM sensor system for screening semen samples. J Sens 2010

  42. Atherton S (2011) Semen quality detection using acoustic wave sensors. Nottingham Trent University (United Kingdom)

    Google Scholar 

  43. World Health Organisation (1999) WHO laboratory manual for the examination of human semen and sperm-cervical mucus interaction. Cambridge university press

    Google Scholar 

  44. Singh L, Vasimalla Y, Dhasarathan V, Skibina JS, Gryaznov AY, Konnova SS (2023) A highly sensitive refractive index based etched optical fiber sensor for detection of human sperm. Opt Lasers Eng 169:107727

    Article  Google Scholar 

  45. Guo J, Keathley PD, Hastings JT (2008) Dual-mode surface-plasmon-resonance sensors using angular interrogation. Opt Lett 33(5):512–514

    Article  PubMed  Google Scholar 

  46. Semwal V, Srivastava SK (2021) Angular interrogation-based self-referenced LMR sensor with high sensitivity and high figure of merit. IEEE Photonics Technol Lett 33(24):1463–1466

    Article  CAS  Google Scholar 

  47. Lan G, Liu S, Zhang X, Wang Y, Song Y (2015) A simplified high figure-of-merit prism-free surface plasmon resonance refractive index sensor based on self-adaptive angular interrogation. Rev Sci Instrum 86(2):025006

    Article  PubMed  Google Scholar 

  48. Yang Q, Gao L, Zou C, **e W, Tian C, Wang Z, Liang F, Ke Y, Zhou X, Li S (2021) Differential refractive index sensor based on coupled plasmon waveguide resonance in the c-band. Sensors 21(23):7984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pandey PS, Raghuwanshi SK (2022) Sensitivity enhancement of surface plasmon resonance (SPR) sensor assisted by BlueP/MoS 2 based composite heterostructure. IEEE Access 10:116152–116159

    Article  Google Scholar 

  50. Raghuwanshi SK, Pandey PS (2022) A numerical study of different metal and prism choices in the surface plasmon resonance biosensor chip for human blood group identification. IEEE Trans NanoBiosci 22(2):292–300

    Article  Google Scholar 

  51. Pandey PS, Raghuwanshi SK, Shadab A, Ansari MT, Tiwari UK, Kumar S (2021) Theoretical analysis of the LRSPR sensor with enhance FOM for low refractive index detection using MXene and fluorinated graphene. IEEE Sens J 21(21):23979–23986

    Article  CAS  Google Scholar 

  52. Pandey PS, Raghuwanshi SK, Shadab A, Ansari MT, Tiwari UK, Kumar S (2022) SPR based biosensing chip for COVID-19 diagnosis—a review. IEEE Sens J 22(14):13800–13810

    Article  CAS  PubMed  Google Scholar 

  53. Pandey PS, Raghuwanshi SK, Singh Y (2022) Enhancement of the sensitivity of a surface plasmon resonance sensor using a nobel structure based on barium titanate–graphene-silver. Opt Quantum Electron 54(7):417

    Article  CAS  Google Scholar 

  54. Mandal S et al (2002) Surface plasmon resonance in nanocrystalline silver particles embedded in SiO2 matrix. J Phys D Appl Phys 35(17):2298

    Article  Google Scholar 

  55. Ryu GH, Lewis NP, Kotsonis GN, Maria JP, Dickey EC (2020) Crystallization behavior of amorphous BaTiO3 thin films. J Mater Sci 55(21):8793–8801

    Article  CAS  Google Scholar 

  56. Singh S, Upadhyay A, Chaudhary B, Sirohi K, Kumar S (2023) Enhanced Cu-Ni-TiO 2-BP plasmonic biosensor for highly sensitive biomolecule detection and SARS-CoV-2 Diagnosis. IEEE Sens J 24(1):254–261

    Article  Google Scholar 

Download references

Acknowledgements

Gracia Nirmala Rani extends heartfelt gratitude to the Science and Engineering Research Board (SERB) for their generous funding of this project under the scheme “Teachers Associateship for Research Excellence” (TARE), with reference no. TAR/2021/000335. Their support has been instrumental in the successful completion of this research, and we are deeply grateful for their contribution. N Ayyanar acknowledges SERB SURE, India, for providing financial assistantship through State University Research Excellence (SUR/2022/003424).

Funding

Science and Engineering Research Board (SERB) under the scheme “Teachers Associateship for Research Excellence” (TARE), with reference no. TAR/2021/000335, and SERB SURE, India, State University Research Excellence (SUR/2022/003424).

Author information

Authors and Affiliations

Authors

Contributions

Dharshini K, Madhumita G, and Ayyanar N contributed to designing the model through numerical analysis and also written manuscript. N.R. Ramanujam contributed to the sample RI preparation. The first draft of the manuscript is written and also verified results by Gracia Nirmala Rani, Prabhakar G, and Rajaram S. All authors read and approved the final manuscript.

Corresponding author

Correspondence to N. Ayyanar.

Ethics declarations

Ethics Approval

This study complies with ethical standards.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayyanar, N., Rani, G.N., Dharshini, K. et al. GST-Based Surface Plasmon Resonance Reconfigurable Biosensor for Detection of Human Sperm. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02361-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02361-x

Keywords

Navigation