Log in

Ultrahigh Sensitivity Surface Plasmonic Resonance Temperature Sensor Based on Polydimethylsiloxane-Coated Photonic Crystal Fiber

  • Research
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We propose and demonstrate a compact optical fiber temperature sensor based on surface plasmon resonance with high sensitivity and high figure of merit. This optical fiber temperature sensor uses a new photonic crystal fiber designed by us, which is realized by coating a gold film on the polished plane of the photonic crystal fiber and coating the high thermo-optical coefficient material polydimethylsiloxane on the outer surface of the fiber. Small changes in the refractive index of the polydimethylsiloxane due to temperature variations will affect the plasmon pattern, which in turn leads to a change in the measured transmission spectrum. Our numerical results show that the maximum achievable temperature sensitivity of this optical fiber temperature sensor in the range of 60–100 °C is 38 nm/°C, and the maximum refractive index sensitivity and figure of merit are 84444.4 nm/RIU and 603.175 RIU−1, respectively. This is better than the existing various types of PCF temperature sensor. The proposed temperature sensor has the advantages of stable structure, ultra-high temperature sensitivity, and small size. It has good application potential in the field of high-precision temperature control, environmental temperature detecting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available upon reasonable request from the authors.

References

  1. Sessler DI, Warner DS, Warner MA (2008) Temperature monitoring and perioperative thermoregulation. Anesthesiology 109(2):318–338

    Article  PubMed  Google Scholar 

  2. Goel B, McKee SA, Gioiosa R et al (2010) Portable, scalable, per-core power estimation for intelligent resource management. Proc Int Conf Green Comput 135–146

  3. Khan F, Xu Z, Sun J et al (2022) Recent advances in sensors for fire detection. Sensors-Basel 22(9):3310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Scherrer D, Koerner C (2010) Infra-red thermometry of alpine landscapes challenges climatic warming projections. Global Change Biol 16(9):2602–2613

    Article  Google Scholar 

  5. Gaitani N, Burud I, Thiis T et al (2017) High-resolution spectral map** of urban thermal properties with unmanned aerial vehicles. Build Environ 121:215–224

    Article  Google Scholar 

  6. Khanal S, Fulton J, Shearer S (2017) An overview of current and potential applications of thermal remote sensing in precision agriculture. Comput Electron Agr 139:22–32

    Article  Google Scholar 

  7. Pereira Guimaraes BM, da Silva Fernandes CM, Amaral de Figueiredo D et al (2022) Cutting temperature measurement and prediction in machining processes: comprehensive review and future perspectives. Int J Adv Manuf Tech 120(5):2849–2878

    Article  Google Scholar 

  8. Zhu Z, Liu L, Liu Z et al (2017) Surface-plasmon-resonance-based optical-fiber temperature sensor with high sensitivity and high figure of merit. Opt Lett 42(15):2948–2951

    Article  CAS  PubMed  Google Scholar 

  9. He J, Liao C, Yang K et al (2015) High-sensitivity temperature sensor based on a coated single-mode fiber loop. J Lightwave Technol 33(19):4019–4026

    Article  CAS  Google Scholar 

  10. Tan J, Feng G, Zhang S et al (2018) Dual spherical single-mode-multimode-single-mode optical fiber temperature sensor based on a mach–Zehnder interferometer. Laser Phys 28(7):075102

    Article  Google Scholar 

  11. **ng R, Dong C, Wang Z et al (2018) Simultaneous strain and temperature sensor based on polarization maintaining fiber and multimode fiber. Opt Laser Technol 102:17–21

    Article  CAS  Google Scholar 

  12. Fu X, Zhang Y, Zhou J et al (2022) A temperature and strain dual-parameter sensor based on conical four-core fiber combined with a multimode fiber. IEEE Sens J 22(24):23990–23996

    Article  CAS  Google Scholar 

  13. Mollah MA, Islam SMR, Yousufali M et al (2020) Plasmonic temperature sensor using D-shaped photonic crystal fiber. Results Phys 16:102966

    Article  Google Scholar 

  14. Hu DJJ, Ho HP (2017) Recent advances in plasmonic photonic crystal fibers: design, fabrication and applications. Adv Opt Photonics 9(2):257–314

    Article  Google Scholar 

  15. Wang Y, Huang Q, Zhu W et al (2018) Novel optical fiber SPR temperature sensor based on MMF-PCF-MMF structure and gold-PDMS film. Opt Express 26(2):1910–1917

    Article  CAS  PubMed  Google Scholar 

  16. Yin Z, **g X, Bai G et al (2022) A broadband SPR dual-channel sensor based on a PCF coated with sodium-silver for refractive index and temperature measurement. Results Phys 41:105943

    Article  Google Scholar 

  17. Zhang W, Luan N (2023) Air-silica core microstructured optical fiber-based SPR sensor for temperature and refractive index measurement. Results Phys 53:106976

    Article  Google Scholar 

  18. Gao Z, Feng Y, Chen H et al (2023) Refractive index and temperature sensing system with high sensitivity and large measurement range using an optical fiber. IEEE T Instrum Meas 72:1–6

    Google Scholar 

  19. Gao S, Wei K, Yang H et al (2023) Design of surface plasmon resonance-based D-type double open-loop channels PCF for temperature sensing. Sensors-Basel 23(17):7569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yin Z, **g X, Li K et al (2024) Modulation of the sensing bandwidth of dual-channel SPR sensors by TiO2 film. Opt Laser Technol 169:110105

    Article  CAS  Google Scholar 

  21. Zhao YJ, Song NF, Gao F et al (2021) High-precision photonic crystal fiber-based pressure sensor with low-temperature sensitivity. Opt Express 29(20):32453–32463

    Article  CAS  PubMed  Google Scholar 

  22. Li J, Xu M, Liu J et al (2022) Theoretical analysis of a highly sensitive SPR temperature sensor based on Ag/TiO2 hyperbolic metamaterials and PDMS film. Opt Laser Technol 156:108610

    Article  CAS  Google Scholar 

  23. Shakya AK, Ramola A, Singh S et al (2022) Design of an ultra-sensitive bimetallic anisotropic PCF SPR biosensor for liquid analytes sensing. Opt Express 30(6):9233–9255

    Article  CAS  PubMed  Google Scholar 

  24. Fujisawa T, Koshiba M (2003) Finite element characterization of chromatic dispersion in nonlinear holey fibers. Opt Express 11(13):1481–1489

    Article  PubMed  Google Scholar 

  25. Florous N, Saitoh K, Koshiba M (2005) A novel approach for designing photonic crystal fiber splitters with polarization-independent propagation characteristics. Opt Express 13(19):7365–7373

    Article  PubMed  Google Scholar 

  26. Kowalczyk P, Wiktor M, Mrozowski M (2005) Efficient finite difference analysis of microstructured optical fibers. Opt Express 13(25):10349–10359

    Article  CAS  PubMed  Google Scholar 

  27. Russell P (2003) Photonic crystal fibers. Science 299:358–362

    Article  CAS  PubMed  Google Scholar 

  28. Wu T, Shao Y, Wang Y et al (2017) Surface plasmon resonance biosensor based on gold-coated side-polished hexagonal structure photonic crystal fiber. Opt Express 25(17):20313–20322

    Article  CAS  PubMed  Google Scholar 

  29. Liu C, Yang L, Lu X et al (2017) Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers. Opt Express 25(13):14227–14237

    Article  CAS  PubMed  Google Scholar 

  30. Yang X, Lu Y, Liu B et al (2017) Simulation of LSPR sensor based on exposed-core grapefruit fiber with a silver nanoshell. J Lightwave Technol 35(21):4728–4733

    Article  CAS  Google Scholar 

  31. Mishra SK, Tripathi SN, Choudhary V et al (2014) SPR based fibre optic ammonia gas sensor utilizing nanocomposite film of PMMA/reduced graphene oxide prepared by in situ polymerization. Sens Actuat B-Chem 199:190–200

    Article  CAS  Google Scholar 

  32. Mishra AK, Mishra SK, Verma RK (2017) Doped single-wall carbon nanotubes in propagating surface plasmon resonance-based fiber optic refractive index sensing. Plasmonics 12:1657–1663

    Article  CAS  Google Scholar 

  33. Chaudhary VS, Kumar D, Mishra GP et al (2022) Plasmonic biosensor with gold and titanium dioxide immobilized on photonic crystal fiber for blood composition detection. IEEE Sens J 22(9):8474–8481

    Article  CAS  Google Scholar 

  34. Tabassum R, Gupta BD (2017) Simultaneous tuning of electric field intensity and structural properties of ZnO: graphene nanostructures for FOSPR based nicotine senso. Biosens Bioelectron 91:762–769

    Article  CAS  PubMed  Google Scholar 

  35. Wang Q, Wang XZ, Song H et al (2020) A dual channel self-compensation optical fiber biosensor based on coupling of surface plasmon polariton. Opt Laser Technol 124:106002

    Article  CAS  Google Scholar 

  36. Park JH, Lee DY, Kim YH et al (2014) Flexible and transparent metallic grid electrodes prepared by evaporative assembly. ACS Appl Mater Interfaces 6(15):12380–12387

    Article  CAS  PubMed  Google Scholar 

  37. Yin ZK, Lv RQ, Zhang JY et al (2023) Optical fiber temperature sensor based on PDMS-filled air-cavity fabry-perot structure. IEEE T Instrum Meas 72:1–6

    Google Scholar 

  38. Malitson IH (1965) Interspecimen comparison of the refractive index of fused silica. J Opt Soc Am 55(10):1205–1209

    Article  CAS  Google Scholar 

  39. Rakić AD, Djurišić AB, Elazar JM et al (1998) Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Opt 37(22):5271–5283

    Article  PubMed  Google Scholar 

  40. Wang Y, Zhou J, Luo Z et al (2023) Chloroform-infiltrated photonic crystal fiber with high-temperature sensitivity. Opt Express 31(8):13279–13290

    Article  CAS  PubMed  Google Scholar 

  41. Fu S, ** W, Song M et al (2024) Ultrahigh Sensitivity Refractive Index sensor based on double-side polished photonic crystal fiber with zigzag gold film. Plasmonics 19:1565–1577

    Article  CAS  Google Scholar 

  42. Bilal MM, Lopez-Aguayo S, Thottoli A (2023) Numerical analysis of solid-core photonic crystal fiber based on plasmonic materials for analyte refractive index sensing. Photonics-basel 10(10):1070

    Article  CAS  Google Scholar 

  43. Bing P, Sui J, Wu G et al (2020) Analysis of dual-channel simultaneous detection of photonic crystal fiber sensors. Plasmonics 15:1071–1076

    Article  CAS  Google Scholar 

  44. Xue J, Zhang Y, Liu W et al (2022) Ultrahigh-sensitivity SPR fiber temperature sensor based Ge2Sb2Te5 and cyclohexane. Sens Actuat A-Phys 345:113786

    Article  CAS  Google Scholar 

  45. She Y, Ling T, Xu M et al (2023) Dual D-shaped Photonic Crystal Fiber Sensor for three-parameter sensing based on Surface Plasmon Resonance. IEEE Sens J 24(3):2705–2716

    Article  Google Scholar 

  46. Liu T, Lin Z, Lai C et al (2024) High-sensitivity optical fiber SPR temperature sensing probe based on Au-PDMS@ au coating. Opt Fiber Technol 84:103733

    Article  CAS  Google Scholar 

  47. Bilal MM, Bi W, Jaleel F et al (2019) Magnetic fluid-based photonic crystal fiber for temperature sensing. Opt Eng 58(7):072008–072008

    Article  CAS  Google Scholar 

  48. Bilal MM, López-Aguayo S, Szczerska M et al (2022) Multi-functional sensor based on photonic crystal fiber using plasmonic material and magnetic fluid. Appl Opt 61(35):10400–10407

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Supported by the Training Program of Young Backbone Teacher in Colleges and Universities in Henan Province No. 2021GGJS112, Training Program of Young Backbone Teacher in Zhongyuan University of Technology No. 2020XQG15, Natural Science Foundation Project of Zhongyuan University of Technology No. K2023MS003, General Program of Henan Provincial Natural Science Foundation No. 242300420267, Open Fund of Henan Key Laboratory of Laser and Opto-electric Information Technology under Grant No. JG2023-RF04, The key scientific and technological project of Henan Province No. 232102210176, Zhengzhou University of Technology Technology research & development Promotion and Transformation Fund Project No. zjz202308, Zhongyuan University of Technology Discipline Strength Enhancement Program Project No. SD202407.

Author information

Authors and Affiliations

Authors

Contributions

S. Fu: investigation, formal analysis, writing—original draft. W. **: investigation, methodology, formal analysis, writing—review and editing, funding acquisition. L. Liu: investigation. M. Song: validation, formal analysis. Y. Guo: investigation. H. Qi: validation. X. Sun: conceptualization, supervision, investigation, methodology.

Corresponding authors

Correspondence to Wentao ** or **aohong Sun.

Ethics declarations

Ethical Approval

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, S., **, W., Liu, L. et al. Ultrahigh Sensitivity Surface Plasmonic Resonance Temperature Sensor Based on Polydimethylsiloxane-Coated Photonic Crystal Fiber. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02359-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02359-5

Keywords

Navigation