Log in

Bismuthene-Coated Fiber-Optic Plasmonic Sensor: Theoretical Foundation for the Experimental Detection of Human Colorectal Cancer

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, we propose an approach to the detection of colorectal cancer (CRC) using an uncladded fiber optic plasmonic sensor with the help of silver thin film and a bismuthene nanolayer. Bovine serum albumin (BSA) is coated over bismuthene to provide favorable conditions for the attachment of path mucosa. The colorectal tissue sample is made up of the interstitial fluids (ISF) and different scatterers. In this paper, the volume fraction of scatterers in the pathological tissue sample (fSP) is varied from 35 to 75%. Performance-defining parameters such as resonance wavelength (λr), shift in λr (δλr), minimum transmittance (Tmin), and bandwidth (BW) based on transmittance curves are determined. In addition, field intensity–based parameters, i.e., penetration depth (PD), are also determined. It is found that δλr, BW, and PD increase while Tmin decreases by moving from normal mucosa to path mucosa and further increasing its fSP. The addition of bismuthene increases PD and does not have much impact on δλr and Tmin but degrades the resolution by increasing the BW. Further, the addition of BSA does not have much impact on Tmin, BW, and PD but slightly reduces the δλr. A higher PD for the proposed structure indicates the advantage of the addition of bismuthene (2D material). Finally, the comparison table reveals that the proposed sensor is highly sensitive with respect to the recently reported fiber-optic SPR sensor. Therefore, it is believed that the proposed structure can detect the path mucosa and hence CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data

No datasets were generated or analysed during the current study.

References

  1. World Health Organization International Agency for Research on Cancer (2020) The global cancer observatory - all cancers. Int Agency Res Cancer - WHO 419:199–200. Available: https://gco.iarc.fr/today/home

  2. Torgovnick A, Schumacher B (2015) DNA repair mechanisms in cancer development and therapy. Front Genet 6(APR):1–15. https://doi.org/10.3389/fgene.2015.00157

    Article  CAS  Google Scholar 

  3. Mármol I, Sánchez-de-Diego C, Dieste AP, Cerrada E, Yoldi MJR (2017) Colorectal carcinoma: a general overview and future perspectives in colorectal cancer. Int J Mol Sci 18(1):197. https://doi.org/10.3390/ijms18010197

  4. Kaur B, Kumar S, Kaushik BK (2021) Recent advancements in optical biosensors for cancer detection. Biosens Bioelectron 197(August 2021):113805. https://doi.org/10.1016/j.bios.2021.113805

    Article  CAS  PubMed  Google Scholar 

  5. Niedermaier T, Weigl K, Hoffmeister M, Brenner H (2018) Flexible sigmoidoscopy in colorectal cancer screening: implications of different colonoscopy referral strategies. Eur J Epidemiol 33(5):473. https://doi.org/10.1007/S10654-018-0404-X

    Article  PubMed  PubMed Central  Google Scholar 

  6. Coppedè F, Lopomo A, Spisni R, Migliore L (2014) Genetic and epigenetic biomarkers for diagnosis, prognosis and treatment of colorectal cancer. World J Gastroenterol 20(4):943. https://doi.org/10.3748/WJG.V20.I4.943

    Article  PubMed  PubMed Central  Google Scholar 

  7. Li L et al (2021) Superiority of fecal carcinoembryonic antigen as diagnosis marker for adenomatous polyposis coli and asymptomatic colorectal cancer. Therap Adv Gastroenterol 14(X):1–13. https://doi.org/10.1177/17562848211062792

    Article  CAS  Google Scholar 

  8. Heresbach D, Manfredi S, D’Halluin PN, Bretagne JF, Branger B (2006) Review in depth and meta-analysis of controlled trials on colorectal cancer screening by faecal occult blood test. Eur J Gastroenterol Hepatol 18(4):427–433. https://doi.org/10.1097/00042737-200604000-00018

    Article  PubMed  Google Scholar 

  9. Shaukat A, Levin TR (2022) Current and future colorectal cancer screening strategies. Nat Rev Gastroenterol Hepatol 19(8):521–531. https://doi.org/10.1038/s41575-022-00612-y

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kumar S, Singh R (2020) Recent optical sensing technologies for the detection of various biomolecules: review. Opt Laser Technol 134(September 2020):10106620. https://doi.org/10.1016/j.optlastec.2020.106620

    Article  CAS  Google Scholar 

  11. Akshaya K et al (2020) Bioconjugated gold nanoparticles as an efficient colorimetric sensor for cancer diagnostics. Photodiagnosis Photodyn Ther 30:101699. https://doi.org/10.1016/j.pdpdt.2020.101699

    Article  CAS  PubMed  Google Scholar 

  12. Das S, Devireddy R, Gartia MR (2023) Surface plasmon resonance (SPR) sensor for cancer biomarker detection. Biosens 13:396. https://doi.org/10.3390/BIOS13030396

    Article  CAS  Google Scholar 

  13. Gade A, Sharma A, Srivastava N, Flora SJS (2022) Surface plasmon resonance: a promising approach for label-free early cancer diagnosis. Clin Chim Acta 527:79–88. https://doi.org/10.1016/J.CCA.2022.01.023

    Article  CAS  PubMed  Google Scholar 

  14. Kaur B, Kumar S, Kaushik BK (2022) MXenes-based fiber-optic SPR sensor for colorectal cancer diagnosis. IEEE Sens J 22(7):6661–6668. https://doi.org/10.1109/JSEN.2022.3154385

    Article  CAS  Google Scholar 

  15. Prajapati YK, Maurya JB (2020) Experimental demonstration of DNA hybridization using graphene based plasmonic sensor chip. J Light Technol 38(18):5191–5198. https://opg.optica.org/abstract.cfm?uri=jlt-38-18-5191

  16. Zhao Y, Jie Tong R, **a F, Peng Y (2019) Current status of optical fiber biosensor based on surface plasmon resonance. Biosens Bioelectron 142:11. https://doi.org/10.1016/J.BIOS.2019.111505

    Article  Google Scholar 

  17. Gupta BD, Srivastava SK, Verma R (2015) Fiber optic sensors based on plasmonics. World Scientific: 1–267. https://doi.org/10.1142/9289

  18. D’Agata R, Bellassai N, Jungbluth V, Spoto G (2021) Recent advances in antifouling materials for surface plasmon resonance biosensing in clinical diagnostics and food safety. Polymer 13(12):1929. https://doi.org/10.3390/POLYM13121929

    Article  Google Scholar 

  19. Lu J et al (2016) Fiber optic-SPR platform for fast and sensitive infliximab detection in serum of inflammatory bowel disease patients. Biosens Bioelectron 79:173–179. https://doi.org/10.1016/J.BIOS.2015.11.087

    Article  CAS  PubMed  Google Scholar 

  20. Rahad R, Rakib AKM, Mahadi MK, Faruque O (2023) Fuel classification and adulteration detection using a highly sensitive plasmonic sensor. Sens Bio-Sensing Res 40:100560. https://doi.org/10.1016/j.sbsr.2023.100560

  21. Rahad R, Rakib AKM, Haque MA, Sharar SS, Sagor RH (2023) Plasmonic refractive index sensing in the early diagnosis of diabetes, anemia, and cancer: an exploration of biological biomarkers. Results in physics 49:106478. https://doi.org/10.1016/j.rinp.2023.106478

  22. Haque MA, Rahad R, Faruque MO, Mobassir MS, Sagor RH (2023) Numerical analysis of a metal-insulator-metal waveguide-integrated magnetic field sensor operating at sub-wavelength scales. Sens Bio-Sensing Res 43(December):2024. https://doi.org/10.1016/j.sbsr.2023.100618

    Article  Google Scholar 

  23. Tariq SM, Fakhri MA, Salim ET, Hashim U, Alsultany FH (2022) Design of an unclad single-mode fiber-optic biosensor based on localized surface plasmon resonance by using COMSOL Multiphysics 5.1 finite element method. Appl Opt 61(21):6257. https://doi.org/10.1364/ao.458175

    Article  CAS  PubMed  Google Scholar 

  24. Chakma S, Khalek MA, Paul BK, Ahmed K, Hasan MR, Bahar AN. Gold-coated photonic crystal fiber biosensor based on surface plasmon resonance: design and analysis. Elsevier. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2214180417302064. Accessed 26 Dec 2023

  25. Shakya AK, Singh S (2022) Design of a novel refractive index BIOSENSOR for heavy metal detection from water samples based on fusion of spectroscopy and refractive index sensing. Optik (Stuttg) 270:169892. https://doi.org/10.1016/j.ijleo.2022.169892

    Article  CAS  Google Scholar 

  26. Zainuddin NAM, Ariannejad MM, Arasu PT, Harun SW, Zakaria R (2019) Investigation of cladding thicknesses on silver SPR based side-polished optical fiber refractive-index sensor. Results Phys 13:102255. https://doi.org/10.1016/J.RINP.2019.102255

    Article  Google Scholar 

  27. Maurya JB, Prajapati YK (2016) A comparative study of different metal and prism in the surface plasmon resonance biosensor having MoS2-graphene. Opt Quantum Electron 48:280. https://doi.org/10.1007/S11082-016-0562-6

  28. Kim NH, Choi M, Kim TW, Choi W, Park SY, Byun KM (2019) Sensitivity and stability enhancement of surface plasmon resonance biosensors based on a large-area Ag/MoS2 substrate. Sensors (Basel) 19(8):1894. https://doi.org/10.3390/S19081894

  29. Karni O, Esin I, Dani KM (2022) Through the lens of a momentum microscope: viewing light-induced quantum phenomena in 2D materials. Adv Mater. https://doi.org/10.1002/ADMA.202204120

    Article  PubMed  Google Scholar 

  30. Vishnoi P, Pramoda K, Rao CNR (2019) 2D elemental nanomaterials beyond graphene. ChemNanoMat 5(9):1062–1091. https://doi.org/10.1002/cnma.201900176.s

    Article  CAS  Google Scholar 

  31. Hu M, Li M, Li MY, Wen X, Deng S, Liu S, Lu H (2023) Sensitivity enhancement of 2D material-based surface plasmon resonance sensor with an Al–Ni bimetallic structure. Sensors 23(3):1714. https://www.mdpi.com/1424-8220/23/3/1714

  32. Sun S et al (2022) Epitaxial growth of ultraflat bismuthene with large topological band inversion enabled by substrate-orbital-filtering effect. ACS Nano 16(1):1436–1443. https://doi.org/10.1021/acsnano.1c09592

    Article  CAS  PubMed  Google Scholar 

  33. Kumar S et al (2023) (Invited) Advances in 2D nanomaterials-assisted plasmonics optical fiber sensors for biomolecules detection. Results Opt 10:100342. https://doi.org/10.1016/J.RIO.2022.100342

    Article  Google Scholar 

  34. Basyouni OH, Abdelfatah M, El-Khouly ME, Mohamed T, El-Shaer A, Ismail W (2021) Facile and environmentally friendly fabrication of few-layer bismuthene by electrochemical exfoliation method for ultrafast photonic applications. J Alloys Compd 882:160766. https://doi.org/10.1016/J.JALLCOM.2021.160766

  35. Kadhim RA, Yuan L, Xu H, Wu J, Wang Z (2020) Highly sensitive D-shaped optical fiber surface plasmon resonance refractive index sensor based on Ag-α-Fe2O3Grating. IEEE Sens J 20(17):9816–9824. https://doi.org/10.1109/JSEN.2020.2992854

    Article  CAS  Google Scholar 

  36. Dubey SK, Kumar A, Kumar A, Pathak A, Srivastava SK (2022) A study of highly sensitive D-shaped optical fiber surface plasmon resonance based refractive index sensor using grating structures of Ag-TiO2 and Ag-SnO2. Optik (Stuttg) 252(October):2021. https://doi.org/10.1016/j.ijleo.2021.168527

    Article  CAS  Google Scholar 

  37. Andersen M, Painter LR, Nir S (1974) Dispersion equation and polarizability of bovine serum albumin from measurements of refractive indices. Biopolymers 13(6):1261–1267. https://doi.org/10.1002/bip.1974.360130616

    Article  CAS  Google Scholar 

  38. Carneiro I, Carvalho S, Silva V, Henrique R, Oliveira L, Tuchin VV (2018) Kinetics of optical properties of human colorectal tissues during optical clearing: a comparative study between normal and pathological tissues. J Biomed Opt 23(12):1. https://doi.org/10.1117/1.jbo.23.12.121620

    Article  CAS  Google Scholar 

  39. Wang Y et al (2021) Engineering 2D multifunctional ultrathin bismuthene for multiple photonic nanomedicine. Adv Funct Mater 31(6):1–12. https://doi.org/10.1002/adfm.202005093

    Article  CAS  Google Scholar 

  40. Umeyama T, Xu H, Ohara T, Tsutsui Y, Seki S, Imahori H (2021) Photodynamic and photoelectrochemical properties of few-layered bismuthene film on SnO2Electrode and its hybridization with C60. J Phys Chem C 125(25):13954–13962. https://doi.org/10.1021/ACS.JPCC.1C03574

    Article  CAS  Google Scholar 

  41. del Castillo-Santaella T, Aguilera-Garrido A, Galisteo-González F, Gálvez-Ruiz MJ, Molina-Bolívar JA, Maldonado-Valderrama J (2022) Hyaluronic acid and human/bovine serum albumin shelled nanocapsules: interaction with mucins and in vitro digestibility of interfacial films. Food Chem 383:132330. https://doi.org/10.1016/j.foodchem.2022.132330

  42. Zeni L et al (2020) A portable optical-fibre-based surface plasmon resonance biosensor for the detection of therapeutic antibodies in human serum. Sci Rep 10(1):1–9. https://doi.org/10.1038/s41598-020-68050-x

    Article  CAS  Google Scholar 

  43. Cennamo N, Mattiello F, Galatus RV, Voiculescu E, Zeni L (2018) Plasmonic sensing in D-shaped POFs with fluorescent optical fibers as light sources. IEEE Trans Instrum Meas 67(4):754–759. https://doi.org/10.1109/TIM.2017.2745018

    Article  CAS  Google Scholar 

  44. Shan BH et al (2021) High sensitivity and ultra compact fiber-optic microtip SPR thermometer coated with Ag/PDMS bilayer film. Opt Fiber Technol 65(July):102619. https://doi.org/10.1016/j.yofte.2021.102619

    Article  CAS  Google Scholar 

  45. Saitta L, Cennamo N, Tosto C, Arcadio F, Fragalà ME, Zeni L, Cicala G (2021) Surface plasmon resonance sensor based on inkjet 3D printing. Eng Proc 11(1):39. https://doi.org/10.3390/ASEC2021-11127

  46. Liu L, Liu Z, Zhang Y, Liu S (2022) High-sensitivity triple-channel optical fiber surface plasmon resonance sensor. IEEE Sens J 22(19):18446–18453. https://doi.org/10.1109/JSEN.2022.3198429

    Article  CAS  Google Scholar 

  47. Gao Z, Feng Y, Chen H, Chen Q, Li Y, Zhang M (2023) Refractive index and temperature sensing system with high sensitivity and large measurement range using an optical fiber. IEEE Trans Instrum Meas 72:1–6. https://doi.org/10.1109/TIM.2023.3237224

    Article  Google Scholar 

  48. Mumtaz F, Zhang B, Roman M, Abbas LG, Ashraf MA, Dai Y (2023) Computational study: windmill-shaped multi-channel SPR sensor for simultaneous detection of multi-analyte. Meas J Int Meas Confed 207(December 2022):112386. https://doi.org/10.1016/j.measurement.2022.112386

    Article  Google Scholar 

Download references

Funding

This work was supported by Science and Engineering Research Board (SERB), Department of Science & Technology, Government of India (file no. SRG/2021/001744).

Author information

Authors and Affiliations

Authors

Contributions

Neelesh Kumar Yadav has produced the results and prepared the draft of the manuscript. Jitendra Bahadur Maurya has edited and finalized the manuscript.

Corresponding author

Correspondence to Jitendra Bahadur Maurya.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6145 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, N.K., Maurya, J.B. Bismuthene-Coated Fiber-Optic Plasmonic Sensor: Theoretical Foundation for the Experimental Detection of Human Colorectal Cancer. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02275-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02275-8

Keywords

Navigation