Log in

A Study of the Plasmonic Properties of Composite Arrays Based on Graphene Nanoribbons and Perovskite Nanowires

  • Research
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

This work reports on the plasmonic properties of composite arrays consisting of graphene nanoribbons and perovskite nanowires, in the mid-infrared region of 5–60 \(\mu\)m. In the array, a set of graphene nanoribbons are placed on the perovskite nanowires, which are embedded in a glass substrate. Two scenarios are investigated in this work: one is that the graphene and the perovskite are matched, while the other is that the graphene and the perovskite are mismatched. The light transmittance of the arrays is numerically simulated, via the finite difference time domain method. Multiple plasmonic resonances are observed, and the corresponding electric field distributions are calculated. The results demonstrate that the plasmonic characteristics of the arrays can be adjusted by varying the parameters including the chemical potential and the layer number of graphene, as well as the refractive index of perovskite, etc. In addition, a Fano lineshape is revealed in one of the resonance peaks of the transmittance. It is well fitted to the Beutler-Fano formula, and the characteristic q factor is determined. The results in this work may be useful in studies of similar plasmonic nanostructures that employ graphene and perovskite-based composite nanoarrays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Ozbay E et al (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189–193

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108:462–493

    Article  CAS  PubMed  Google Scholar 

  4. Lee C, Lawrie B, Pooser R et al (2021) Quantum plasmonic sensors. Chem Rev 121:4743–4804

    Article  CAS  PubMed  Google Scholar 

  5. Mousavi NSS, Ramadi KB, Song YA et al (2023) Plasmonics for neuroengineering. Commun Mater 4:1–16

    Article  Google Scholar 

  6. Schuller JA, Barnard ES, Cai W et al (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9:193–204

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Houran MA, Saqlain M, Baqir MA (2023) ITO-based UV dielectric metasurface absorber: achieving polarization-insensitive operation. Europhys Lett 144:16001

    Article  ADS  Google Scholar 

  8. Baqir MA, Choudhury PK (2022) Hyperbolic metamaterial-based optical biosensor for detecting cancer cells. IEEE Photonics Technol Lett 35:183–186

    Article  ADS  Google Scholar 

  9. Baqir MA, Choudhury PK (2017) Graphene-based slab waveguide for slow-light propagation and mode filtering. J Electromagn Waves Appl 31:2055–2063

    Article  Google Scholar 

  10. He G, Stiens J (2018) Enhanced terahertz absorption of graphene composite integrated with double circular metal ring array. Plasmonics 13:1705–1710

    Article  CAS  Google Scholar 

  11. Yang SS, Liu GQ, Meng LP et al (2021) Gap-dependent SERS effect of ordered composite plasmonic nanoparticle arrays and its application for detection of sodium saccharin. Opt Mater 112:110788

    Article  CAS  Google Scholar 

  12. Usman F, Ghazali KH, Fen YW et al (2023) Biosensing through surface enhanced Raman spectroscopy: a review on the role of plasmonic nanoparticle-polymer composites. Eur Polymer J 195:112250

    Article  CAS  Google Scholar 

  13. Kim PSY, Sternbach AJ, Choi MS et al (2023) Ambipolar charge transfer graphene plasmonic cavities. Nat Mater 22:838–843

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Grigorenko AN, Polini M, Novoselov KS (2012) Graphene plasmonics. Nat Photonics 6:749–758

    Article  ADS  CAS  Google Scholar 

  15. Low T, Avouris P (2014) Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano 8:1086–1101

    Article  CAS  PubMed  Google Scholar 

  16. Liu M, Yin XB, Ulin-Avila E et al (2011) A graphene-based broadband optical modulator. Nature 474:64–67

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Yan H, Li X, Chandra B et al (2012) Tunable infrared plasmonic devices using graphene/insulator stacks. Nat Nanotechnol 7:330–334

    Article  ADS  CAS  PubMed  Google Scholar 

  18. MacDonald KF, Samson ZL, Stockman MI et al (2009) Ultrafast active plasmonics. Nat Photonics 3:55–58

    Article  ADS  CAS  Google Scholar 

  19. Pala RA, Shimizu KT, Melosh NA et al (2008) A nonvolatile plasmonic switch employing photochromic molecules. Nano Lett 8:1506–1510

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Rezaei MH, Zarifkar A (2019) Subwavelength electro-optical half-subtractor and half-adder Based on graphene plasmonic waveguides. Plasmonics 14:1939–1947

    Article  CAS  Google Scholar 

  21. Dash S, Soni G, Patnaik A et al (2021) Switched-beam graphene plasmonic nanoantenna in the terahertz wave region. Plasmonics 16:1855–1864

    Article  CAS  Google Scholar 

  22. Azar MTH, Zavvari M, Zehforoosh Y et al (2020) Graphene plasmonic crystal: two-dimensional gate-controlled chemical potential for creation of photonic bandgap. Plasmonics 15:975–983

    Article  CAS  Google Scholar 

  23. Li Z, Yao K, **a F et al (2015) Graphene plasmonic metasurfaces to steer infrared light. Sci Rep 5:12423

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  24. Ansell D, Radko I, Han Z et al (2015) Hybrid graphene plasmonic waveguide modulators. Nat Commun 6:8846

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rafiee E, Negahdari R (2023) Cancer cell detection biosensor based on graphene-plasmonic split square-ring-shaped nanostructure. Plasmonics 18:431–440

    Article  CAS  Google Scholar 

  26. Ma PL, Hu XM, Teng D (2023) Finite-element modeling of a perovskite-based symmetric plasmonic waveguide with deep-subwavelength confinement and high figure of merit. Mater Today Commun 37:107518

    Article  CAS  Google Scholar 

  27. Zhang JQ, Guan ZY, Ma K et al (2023) Perovskite nanowires-based graphene plasmonic waveguides with low loss and low gain threshold. Diam Relat Mater 140:110540

    Article  ADS  CAS  Google Scholar 

  28. Abdulmalek NM, Jawad HA (2023) Combination of near-field and scattering effects in plasmonic perovskite solar cell including cobalt doped nickel oxide HTL. Optik 280:170808

    Article  ADS  CAS  Google Scholar 

  29. Saadatmand SB, Shokouhi S, Hamidi SM et al (2023) Plasmonic heterostructure biosensor based on perovskite/two dimensional materials. Optik 290:171328

    Article  ADS  CAS  Google Scholar 

  30. Kim H, Prestigiacomo J, Bennett S et al (2024) Perovskite stannate La-doped BaSnO\(_{3}\) films for near- and mid-infrared plasmonic applications. Thin Solid Films 788:140147

    Article  ADS  CAS  Google Scholar 

  31. FDTD Solutions. www.lumerical.com

  32. **e Z, Sun SR, Yan Y et al (2017) Refractive index and extinction coefficient of NH\(_{2}\)CH = NH\(_{2}\)PbI\(_{3}\) perovskite photovoltaic material. J Phys Condens Matter 29:245702

    Article  ADS  PubMed  Google Scholar 

  33. Hanson GW (2008) Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J Appl Phys 103:064302

    Article  ADS  Google Scholar 

  34. Stauber T, Peres NMR, Guinea F (2007) Electronic transport in graphene: a semiclassical approach including midgap states. Phys Rev B 76:205423

    Article  ADS  Google Scholar 

  35. Tan YW, Zhang Y, Bolotin K et al (2007) Measurement of scattering rate and minimum conductivity in graphene. Phys Rev Lett 99:246803

    Article  ADS  PubMed  Google Scholar 

  36. Chu HS, Gan CH (2013) Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays. Appl Phys Lett 102:231107

    Article  ADS  Google Scholar 

  37. Gusynin VP, Sharapov SG, Carbotte JP (2007) Sum rules for the optical and Hall conductivity in graphene. Phys Rev B 75:165407

    Article  ADS  Google Scholar 

  38. Casiraghi C, Hartschuh A, Lidorikis E et al (2007) Rayleigh imaging of graphene and graphene layers. Nano Lett 7:2711–2717

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Sun C, Wang XQ (2017) Plasmonic tuning at mid-infrared wavelengths by composite arrays of graphene ribbons. Plasmonics 12:1235–1243

    Article  CAS  Google Scholar 

  40. Jumat SZBH, Chao CTC, Chau YFC et al (2021) Plasmonic refractive index sensor based on the combination of rectangular and circular resonators including baffles. Chin J Phys 71:286–299

    Article  Google Scholar 

  41. Chao CTC, Chen SH, Huang HJ et al (2023) Near- and mid-infrared quintuple-band plasmonic metamaterial absorber. Plasmonics 18:1581–1591

    Article  Google Scholar 

  42. Chao CTC, Chau YFC, Chiang HP (2021) Multiple Fano resonance modes in an ultra-compact plasmonic waveguide-cavity system for sensing applications. Results Phys 27:104527

    Article  Google Scholar 

  43. Chau YFC, Chao CTC, Jumat SZBH et al (2021) Improved refractive index-sensing performance of multimode Fano-resonance-based metal-insulator-metal nanostructures. Nanomaterials 11:2097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chau YFC, Ming TY, Chao CTC et al (2021) Significantly enhanced coupling effect and gap plasmon resonance in a MIM-cavity based sensing structure. Sci Rep 11:18515

    Article  ADS  Google Scholar 

  45. Chau YF, Jheng CY, Joe SF et al (2013) Structurally and materially sensitive hybrid surface plasmon modes in periodic silver-shell nanopearl and its dimer arrays. J Nanopart Res 15:1424

    Article  Google Scholar 

  46. Chau YF, Jiang ZH, Li HY et al (2011) Localized resonance of composite core-shell nanospheres, nanobars and nanospherical chains. Prog Electromagn Res B 28:183–199

    Article  Google Scholar 

  47. Fano U (1961) Effects of configuration interaction on intensities and phase shifts. Phys Rev 124:1866–1878

    Article  ADS  CAS  Google Scholar 

  48. Miroshnichenko AE, Flach S, Kivshar YS (2010) Fano resonances in nanoscale structures. Rev Mod Phys 82:2257–2297

    Article  ADS  CAS  Google Scholar 

  49. Ahmed J, Ahamad T, Alhokbany N et al (2023) Reduced graphene oxide encapsulated perovskite-type lanthanum cobalt oxide nanoparticles for efficient electrolysis of water to oxygen reactions (OER/ORR). J Ind Eng Chem 121:100–106

    Article  CAS  Google Scholar 

  50. Koventhan C, Pandiyarajan S, Chen SM et al (2023) Novel design of perovskite-structured neodymium cobalt oxide nanoparticle-embedded graphene oxide nanocomposites as efficient active materials of energy storage devices. ACS Appl Mater Interfaces 15:44876–44886

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by the Education Department Basic Scientific Research Project of Liaoning Province of China (Grant No. LJKQZ2021171).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Software, analysis, and figures were performed by **nyu He. Methodology and investigation by Cheng Sun. The original draft of the manuscript was written by **nyu He and Cheng Sun. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Cheng Sun.

Ethics declarations

Ethics Approval

Not applicable

Consent to Participate

All authors agreed to participate in this research.

Consent for Publication

Permission from all the authors has been taken to publish this manuscript.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Sun, C. A Study of the Plasmonic Properties of Composite Arrays Based on Graphene Nanoribbons and Perovskite Nanowires. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02259-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02259-8

Keywords

Navigation