Log in

Design of Graphene-Coated Silver Nanoparticle Based on Numerical Solution to Enhance the Absorption of the Thin-Film Solar Cell

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In recent years, thin-film silicon solar cells have garnered significant attention due to their low manufacturing costs, yet their efficiency remains relatively low owing to their limited absorption capacity. The primary approach to enhancing the absorption of thin-film solar cells involves the utilization of plasmonic nanoparticles. In this study, we designed a graphene-coated silver nanoparticle (GCSNP) for this purpose. We modeled its permittivity using the Kubo formula and an equivalent dielectric permittivity model. Our nanoparticle size was deliberately chosen to be significantly smaller than the resonance wavelength, allowing it to be treated as an isotropic homogeneous particle. The inherent plasmonic properties of nanoparticles can enhance the efficiency of photovoltaic cells by increasing their scattering cross-section. We computed the scattering cross-section of GCSNP through numerical solutions and optical simulations for graphene thicknesses ranging between 0.34 and 1 nm. Based on the scattering peak, we optimized the graphene coating thickness to be 0.8 nm. Subsequently, we embedded GCSNPs, each with a graphene thickness of 0.8 nm, within the absorber layer of a Si-based thin-film solar cell and analyzed its properties using the FDTD method. Compared to a similar cell designed with silver nanoparticles, our cell exhibited a 20.6% increase in absorption and a 7.3% rise in short-circuit current density. Finally, we investigated the impact of the geometry and dimensions of GCSNPs on the performance of Si-based thin-film solar cells, determining that a cylindrical shape with a diameter and height of 50 nm each serves as the optimized GCSNP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

All data and materials can be made available by contacting the corresponding author via email.

References

  1. Nair SK, Shinoj V (2021) Enhanced absorption in thin film silicon solar cell using plasmonic nanoparticles: an FDTD study. AIP Conference Proceedings. AIP Publishing

    Google Scholar 

  2. Jangjoy A, Bahador H, Heidarzadeh H (2019) Design of an ultra-thin silicon solar cell using localized surface plasmonic effects of embedded paired nanoparticles. Optics Communications 450:216–221

    Article  CAS  ADS  Google Scholar 

  3. ElKhamisy K, Abdelhamid H, Elagooz S, El-Rabaie E-S (2021) The effect of different surface plasmon polariton shapes on thin-film solar cell efficiency. J Comput Electron 20:1807–1814

    Article  CAS  Google Scholar 

  4. Tran QN, Lee HK, Kim JH, Park SJ (2020) Influence of gold–silver rough-surface nanoparticles on plasmonic light scattering in organic solar cells. J Nanosci Nanotechnol 20(1):304–311

    Article  CAS  PubMed  Google Scholar 

  5. Tabrizi AA, Pahlavan A (2020) Efficiency improvement of a silicon-based thin-film solar cell using plasmonic silver nanoparticles and an antireflective layer. Opt Commun 454:124437

    Article  CAS  Google Scholar 

  6. Buencuerpo J, Saenz TE, Steger M, Young M, Warren EL, Geisz JF, Steiner MA, Tamboli AC (2022) Efficient light-trap** in ultrathin GaAs solar cells using quasi-random photonic crystals. Nano Energy 96:107080

    Article  CAS  Google Scholar 

  7. Li X, Yang W, Deng J, Lin Y (2023) Surface plasmon resonance effects of silver nanoparticles in graphene-based dye-sensitized solar cells. Front Mater 10:1137771

    Article  ADS  Google Scholar 

  8. Itani W (2021) Optimization of light-trap** in thin-film solar cells enhanced with plasmonic nanoparticles. https://ieeexplore.ieee.org/document/5705952

  9. Havryliuk O, Evtukh A, Pylypova O, Semchuk OY, Ivanov I, Zabolotnyi V (2020) Plasmonic enhancement of light to improve the parameters of solar cells. Appl Nanosci 10:4759–4766

    Article  CAS  ADS  Google Scholar 

  10. Peter Amalathas A, Alkaisi MM (2019) Nanostructures for light trap** in thin film solar cells. Micromachines 10(9):619

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mohsin AS, Mobashera M, Malik A, Rubaiat M, Islam M (2020) Light trap** in thin-film solar cell to enhance the absorption efficiency using FDTD simulation. J Opt 49:523–532

    Article  Google Scholar 

  12. Talebi H, Emami F (2022) Broadband plasmonic absorption enhancement of perovskite solar cells with embedded Au@ SiO2@ graphene core–shell nanoparticles. Semicond Sci Technol 37(5):055002

    Article  ADS  Google Scholar 

  13. Mokari G, Heidarzadeh H (2019) Efficiency enhancement of an ultra-thin silicon solar cell using plasmonic coupled core-shell nanoparticles. Plasmonics 14:1041–1049

    Article  CAS  Google Scholar 

  14. Phimu LK, Dhar RS, Singh KJ, Banerjee A (2023) Development and analysis of graphene-sheet-based GaAs Schottky solar cell for enriched efficiency. Micromachines 14(6):1226

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sarkhoush M, Rasooli Saghai H, Soofi H (2022) Design and simulation of type-I graphene/Si quantum dot superlattice for intermediate-band solar cell applications. Frontiers of Optoelectronics 15(1):42

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lee J, Shin S, Kang S, Lee S, Seo J, Lee T (2016) Highly stable surface-enhanced Raman spectroscopy substrates using few-layer graphene on silver nanoparticles. J Nanomater 16(1):409–409

    Google Scholar 

  17. Prokopeva LJ, Wang D, Kudyshev ZA, Kildishev AV (2020) Computationally efficient surface conductivity graphene model for active metadevices. IEEE Trans Antennas Propag 68(3):1825–1835

    Article  ADS  Google Scholar 

  18. Liu J-X, Gao Y-J, Tang W-C, Yang HW (2020) A research of Drude-two-critical points model of graphene near the optical frequency. Superlattices and Microstruct 148:106692

    Article  CAS  Google Scholar 

  19. Figueiredo JL, Bizarro JP, Terças H (2022) Weyl-Wigner description of massless Dirac plasmas: ab initio quantum plasmonics for monolayer graphene. New J Phys 24(2):023026

    Article  MathSciNet  Google Scholar 

  20. Slizovskiy S, Garcia-Ruiz A, Berdyugin AI, **n N, Taniguchi T, Watanabe K, Geim AK, Drummond ND, V.I. Fal’ko. (2021) Out-of-plane dielectric susceptibility of graphene in twistronic and Bernal bilayers. Nano Lett 21(15):6678–6683

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  21. Shi Z, Yang Y, Gan L, Li ZY (2016) Broadband tunability of surface plasmon resonance in graphene-coating silica nanoparticles. Chin Phys B. 25(5):057803

    Article  ADS  Google Scholar 

  22. Selmy AE, Soliman M, Allam NK (2018) Refractory plasmonics boost the performance of thin-film solar cells. Emergent Materials 1:185–191

    Article  CAS  Google Scholar 

  23. Cao S, Wang T, Sun Q, Tang Y, Hu B, Levy U, Yu W (2018) Graphene–silver hybrid metamaterial for tunable and high absorption at mid-infrared waveband. IEEE Photon Technol Lett 30(5):475–478

    Article  CAS  ADS  Google Scholar 

  24. Choi WS, Seo A, Sohn C, Lee HN (2022) Optical properties and characterization of oxide thin films and heterostructures. In Epitaxial growth of complex metal oxides. Elsevier, pp 401–448

    Chapter  Google Scholar 

  25. Tharwat MM, Almalki A, Mahros AM (2021) Plasmon-enhanced sunlight harvesting in thin-film solar cell by randomly distributed nanoparticle array. Materials 14(6):1380

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  26. Heidarzadeh H, Jangjoy A, Bahador H (2022) Use of coupled Al-Ag bimetallic cylindrical nanoparticles to improve the photocurrent of a thin-film silicon solar cell. Plasmonics 17(3):1323–1329

    Article  CAS  Google Scholar 

  27. Farhadnia F, Rostami A, Matloub S (2019) Plasmonic solar cells, a new way to enhance energy conversion efficiency: analysis and modeling of effect of metal geometry. Int J Opt Photonics 13(1):61–70

    Article  Google Scholar 

  28. Dave V, Sorathiya V, Guo T, Patel SK (2018) Graphene based tunable broadband far-infrared absorber. Superlattices Microstruct 124:113–120

    Article  CAS  ADS  Google Scholar 

  29. Revollo H, Ferrada P, Martin P, Marzo A, Del Campo V (2023) HIT solar cell modeling using graphene as a transparent conductive layer considering the Atacama Desert solar spectrum. Appl Sci 13(16):9323

    Article  CAS  Google Scholar 

  30. Akjouj A, Mir A (2020) Design of silver nanoparticles with graphene coatings layers used for LSPR biosensor applications. Vacuum 180:109497

    Article  ADS  Google Scholar 

  31. Pritom YA, Sikder DK, Zaman S, Hossain M (2023) Plasmon-enhanced parabolic nanostructures for broadband absorption in ultra-thin crystalline Si solar cells. Nanoscale Adv 5(18):4986–4995

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  32. Wang L, Hasanzadeh Kafshgari M, Meunier M (2020) Optical properties and applications of plasmonic-metal nanoparticles. Adv Func Mater 30(51):2005400

    Article  CAS  Google Scholar 

  33. Li H, Hu Y, Yang Y, Zhu Y (2020) Theoretical investigation of broadband absorption enhancement in a-Si thin-film solar cell with nanoparticles. Sol Energy Mater Sol Cells 211:110529

    Article  CAS  Google Scholar 

  34. Gao T, Stevens E, Lee J-K, Leu PW (2014) Designing metal hemispheres on silicon ultrathin film solar cells for plasmonic light trap**. Opt Lett 39(16):4647–4650

    Article  CAS  PubMed  ADS  Google Scholar 

  35. Ho WJ, Su SY, Lee YY, Syu HJ, Lin CF (2015) Performance-enhanced textured silicon solar cells based on plasmonic light scattering using silver and indium nanoparticles. Materials 8(10):6668–6676

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  36. Agnihotri SK, Prashant D, Samajdar D (2022) Role of metallic nanoparticles in the optoelectronic performance enhancement of InP ultrathin film solar cell. Opt Mater 134:113129

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The participation of the authors of the article is 50% of the first author, 20% of the second author 20% of the third author and 20% of the fourth author.

Corresponding author

Correspondence to Saeed Golmohammadi.

Ethics declarations

Ethical Approval

This declaration is “not applicable”.

Competing Interests

All financial income is shared between the authors by their participation.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanani, H., Golmohammadi, S., Saghai, H.R. et al. Design of Graphene-Coated Silver Nanoparticle Based on Numerical Solution to Enhance the Absorption of the Thin-Film Solar Cell. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02231-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02231-6

Keywords

Navigation