Log in

Design and Numerical Analysis of a PCF-SPR Sensor for Early-stage Malaria Detection

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

This paper presents a photonic crystal fiber (PCF)-based surface plasmon resonance (SPR) sensor designed to achieve precise malaria detection in blood samples. The sensor’s innovative architecture incorporates carefully optimized layers of plasmonic materials, including gold and TiO2, to attain sensitivity and specificity. Extensive assessment of this sensor’s performance has been carried out through rigorous finite element analysis using COMSOL Multiphysics v5.6. The sensor’s configuration features a gold-coated PCF with a thin analyte layer, enabling the external detection of malaria parasites within blood samples. The air-hole configuration of the PCF sensor resembles the shape of a “barred spiral galaxy”. It has undergone comprehensive testing across various stages of infected blood cells (ring, trophozoite, schizont), as well as normal red blood cells, each with their distinct refractive indices (RI). Through meticulous adjustments to the sensor’s geometric parameters, remarkable wavelength sensitivity of 17,857.14 nm/RIU and amplitude sensitivity of 442.92 RIU−1 have been achieved for the ring phase, 10,210.53 nm/RIU and 392.72 RIU−1 for the trophozoite phase, and 8758.62 nm/RIU and 352.86 RIU−1 for the schizont phase. The numerical investigation also shows that the sensor possesses a low confinement loss of 50.25 dB/cm, 34.97 dB/cm, 28.74 dB/cm, and 25.47 dB/cm for normal RBC, ring phase RBC, trophozoite phase RBC, and schizont phase RBC, respectively. The results confirm the potential of the proposed sensor to detect malaria compared to existing methods. Hence, this sensor holds significant promise for advancing malaria detection and monitoring in blood samples, potentially leading to improved diagnostic and management strategies for this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Cowman AF, Healer J, Marapana D, Marsh K (2016) Malaria: biology and disease. Cell 167(3):610–624. https://doi.org/10.1016/j.cell.2016.07.055

    Article  CAS  PubMed  Google Scholar 

  2. Bhatt S, Weiss D, Cameron E et al (2015) The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 526:207–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. World Health Organization (2021) World Malaria Report 2021. Available at: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021

  4. Zhang M, Wang C, Otto TD, Oberstaller J, Liao X, Adapa SR, Udenze K, Bronner IF, Casandra D, Mayho M, Brown J, Li S, Swanson J, Rayner JC, Jiang RHY, Adams JH (2018) Uncovering the essential genes of the human malaria parasite Plasmodium falciparum by saturation mutagenesis. Science 4;360(6388):eaap7847. https://doi.org/10.1126/science.aap7847

  5. Jager MM, Murk JL, Piqué RD, Hekker TA, Vandenbroucke-Grauls CM (2011) Five-minute Giemsa stain for rapid detection of malaria parasites in blood smears. Trop Doct 41(1):33–35. https://doi.org/10.1258/td.2010.100218. Epub 2010 Nov 18 PMID: 21088023

    Article  CAS  PubMed  Google Scholar 

  6. Poon LL, Wong BW, Ma EH, Chan KH, Chow LM, Abeyewickreme W, Tangpukdee N, Yuen KY, Guan Y, Looareesuwan S, Peiris JS (2006) Sensitive and inexpensive molecular test for falciparum malaria: detecting Plasmodium falciparum DNA directly from heat-treated blood by loop-mediated isothermal amplification. Clin Chem 52(2):303–306. https://doi.org/10.1373/clinchem.2005.057901. Epub 2005 Dec 8

    Article  CAS  PubMed  Google Scholar 

  7. Ranadive N, Kunene S, Darteh S, Ntshalintshali N, Nhlabathi N, Dlamini N, Chitundu S, Saini M, Murphy M, Soble A, Schwartz A, Greenhouse B, Hsiang MS (2017) Limitations of rapid diagnostic testing in patients with suspected malaria: a diagnostic accuracy evaluation from Swaziland, a low-endemicity country aiming for malaria elimination. Clin Infect Dis 64(9):1221–1227. https://doi.org/10.1093/cid/cix131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bharti AR, Letendre SL, Patra KP, Vinetz JM, Smith DM (2009) Malaria diagnosis by a polymerase chain reaction-based assay using a pooling strategy. Am J Trop Med Hyg 81(5):754–757. https://doi.org/10.4269/ajtmh.2009.09-0274

    Article  CAS  PubMed  Google Scholar 

  9. Kochareka M, Sarkar S, Dasgupta D, Aigal U (2012) A preliminary comparative report of quantitative buffy coat and modified quantitative buffy coat with peripheral blood smear in malaria diagnosis. Pathog Glob Health 106(6):335–339. https://doi.org/10.1179/2047773212Y.0000000024

    Article  PubMed  PubMed Central  Google Scholar 

  10. Duo-Quan W, Lin-Hua T, Zhen-Cheng G, **ang Z, Man-Ni Y (2009) Application of the indirect fluorescent antibody assay in the study of malaria infection in the Yangtze River Three Gorges Reservoir, China. Malar J 13(8):199. https://doi.org/10.1186/1475-2875-8-199

    Article  Google Scholar 

  11. Jorgenson, RC, Yee SS (1993) A fiber-optic chemical sensor based on surface plasmon resonance. Sens Actuators B Chem 12(3):213–220 ISSN 0925-4005. https://doi.org/10.1016/0925-4005(93)80021-3

  12. Long S, Wang E, Wu M, Zhu H, Xu N, Wang Y, Cao J (2022) Sensing absorptive fluids with backside illuminated grating coupled SPR sensor fabricated by nanoimprint technology. Sens Actuators A Phys 337:113416 ISSN 0924-4247. https://doi.org/10.1016/j.sna.2022.113416

  13. Kaur V, Singh S (2019) Design of titanium nitride coated PCF-SPR sensor for liquid sensing applications. Opt Fiber Technol 48:159–164 ISSN 1068-5200. https://doi.org/10.1016/j.yofte.2018.12.015

  14. Daniyal WMEMM (2020) Yap Wing Fen, Nurul Illya Muhamad Fauzi, Hazwani Suhaila Hashim, Nur Syahira Md Ramdzan, and Nur Alia Sheh Omar, Recent advances in surface plasmon resonance optical sensors for potential application in environmental monitoring. Sens Mater 32(12):4191–4200

    CAS  Google Scholar 

  15. Balbinot S, Srivastav AM, Vidic J, Abdulhalim I, Manzano M (2021) Plasmonic biosensors for food control. Trends Food Sci Technol 111:128–140 ISSN 0924-2244. https://doi.org/10.1016/j.tifs.2021.02.057

  16. Zhou J, Qi Q, Wang C, Qian Y, Liu G, Wang Y, Fu L (2019) Surface plasmon resonance (SPR) biosensors for food allergen detection in food matrices. Biosens Bioelectron 1(142):111449. https://doi.org/10.1016/j.bios.2019.111449. PMID:31279816

  17. Fan X (2022) Sensitive surface plasmon resonance label-free biosensor on a fiber end-facet. Light Sci Appl 11:325. https://doi.org/10.1038/s41377-022-01025-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mahabubur Rahman M, Aslam Molla M, Kumar Paul A, Based MA, Masud Rana M, Anower MS (2020) Numerical investigation of a highly sensitive plasmonic refractive index sensor utilizing hexagonal lattice of photonic crystal fiber. Results Phys 18:103313

  19. Chaudhary VS, Kumar D, Kumar S (2021) Gold-immobilized photonic crystal fiber-based SPR biosensor for detection of malaria disease in human body. In IEEE Sens J 21(16):17800–17807. https://doi.org/10.1109/JSEN.2021

  20. Srivastava R, Prajapati YK, Pal S, Kumar S (2022) Micro-channel plasmon sensor based on a D-shaped photonic crystal fiber for malaria diagnosis with improved performance. In IEEE Sens J 22(15):14834–14841. https://doi.org/10.1109/JSEN.2022.3181198

  21. Shafkat A, Rashed ANZ, El-Hageen HM et al (2021) Design and analysis of a single elliptical channel photonic crystal fiber sensor for potential malaria detection. J Sol-Gel Sci Technol 98:202–211. https://doi.org/10.1007/s10971-021-05490-5

    Article  CAS  Google Scholar 

  22. Meshginqalam B, Barvestani J (2022) Highly sensitive photonic crystal fiber-based plasmonic biosensor with improved malaria detection application. Eur Phys J Plus 137:581

    Article  CAS  Google Scholar 

  23. Khalaf MK, Tahhan SR, Taher HJ et al (2023) Au-TiO2 coated dielectric micro-channel based plasmonic refractive index sensor. Opt Quant Electron 55:612

    Article  CAS  Google Scholar 

  24. Chaudhary VS, Kumar D, Kumar S (2023) Au-TiO2 coated photonic crystal fiber based SPR refractometric sensor for detection of cancerous cells. IEEE Trans Nanobiosci 22(3):562–569. https://doi.org/10.1109/TNB.2022.3219104

    Article  CAS  Google Scholar 

  25. Hasan MR, Akter S, Rifat AA, Rana S, Ali S (2017) A highly sensitive gold-coated photonic crystal fiber biosensor based on surface plasmon resonance. Photonics 4:18

    Article  Google Scholar 

  26. Das S, Guha S, Das PP, Ghadai RK (2020) Analysis of morphological, microstructural, electrochemical and nano mechanical characteristics of TiCN coatings prepared under N2 gas flow rate by chemical vapour deposition (CVD) process at higher temperature. Ceram Int 46:10292–10298

    Article  CAS  Google Scholar 

  27. Rahman MM, Mou FA, Bhuiyan MI, Islam MR, Design and characterization of a circular sectored core cladding structured photonic crystal fiber with ultra-low EML and flattened dispersion in the THz regime. Opt Fiber Technol 55:102158 ISSN 1068-5200. https://doi.org/10.1016/j.yofte.2020.102158

  28. Pandey SK, Maurya JB, Prajapati YK (2021) Photonic crystal fiber with high nonlinearity and extremely negative dispersion. Opt Quant Electron 53:724

    Article  Google Scholar 

  29. Murphy LR, Yerolatsitis S, Birks TA, Stone JM (2022) Stack, seal, evacuate, draw: a method for drawing hollow-core fiber stacks under positive and negative pressure. Opt Express 30:37303–37313

    Article  CAS  PubMed  Google Scholar 

  30. Rifat AA, Amouzad Mahdiraji G, Shee YG, Jubayer Shawon Md, Mahamd Adikan FR (2016) A novel photonic crystal fiber biosensor using surface plasmon resonance. Procedia Eng 140:1–7 ISSN 1877-7058. https://doi.org/10.1016/j.proeng.2015.08.1107

  31. Devore JR (1951) Refractive indices of rutile and sphalerite. J Opt Soc Am 41:416–419

    Article  CAS  Google Scholar 

  32. Park Y, Diez-Silva M, Popescu G, Lykotrafitis G, Choi W, Feld MS (2008) Suresh S Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum. Proc Natl Acad Sci 105(37):13730–13735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bendib S, Bendib C (2018) Photonic crystals for malaria detection. J Biosens Bioelectron 9:257. https://doi.org/10.4172/2155-6210.1000257

    Article  Google Scholar 

  34. Shakya AK, Singh S (2021) Design of dual polarized tetra core PCF based plasmonic RI sensor for visible-IR spectrum. Opt Commun  478:126372 ISSN 0030-4018. https://doi.org/10.1016/j.optcom.2020.126372

Download references

Funding

No funding is received for this research.

Author information

Authors and Affiliations

Authors

Contributions

Sandip Das was responsible for generating concepts, conducting simulations, and preparing the initial draft of the paper. Riya Sen took on the role of optimizing the simulated design, editing the paper, and preparing the final draft. Ultimately, Sandip Das and Riya Sen collaborated to finalize the paper.

Corresponding author

Correspondence to Sandip Das.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Sen, R. Design and Numerical Analysis of a PCF-SPR Sensor for Early-stage Malaria Detection. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02193-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02193-9

Keywords

Navigation