Log in

The Multipolar Contribution and Plasmon Hybridization in Core–Shell Clusters

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Core–shell structures exhibit excellent versatility, tunability, and stability due to the different material compositions. Here, we synthesized the core–shell structure (SiO2@Au) by sol–gel method and measured the scattering spectra of its monomer, dimer, and trimer by dark field technique. Meanwhile, the contribution of multipole moments to the scattering cross-section is discussed by Mie theory. The simulated total scattering cross-section mainly contributed by electric dipole moments is in good agreement with the experimental spectra. We also found that the inner surface charge of gold shells changes significantly at different wavelengths of linearly polarized light as well as at different circularly polarized light. The asymmetric trimer with a core–shell structure has a more significant chiral response than the gold trimer. Meanwhile, there is a significant electric field enhancement at the slit between particles. This is especially useful for surface-enhanced Raman spectroscopy and the detection of trace chiral molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Li JF, Zhang YJ, Ding SY, Panneerselvam R, Tian ZQ (2017) Core-shell nanoparticle-enhanced Raman spectroscopy. Chem Rev 117(7):5002–5069

    Article  CAS  PubMed  Google Scholar 

  2. Schultz J, Kirner F, Potapov P, Büchner B, Lubk A, Sturm EVn (2021) Tailoring plasmonics of Au@Ag nanoparticles by silica encapsulation. Adv Optical Mater 9(22)

  3. Pol VG, Srivastava DN, Palchik O, Palchik V, Slifkin MA, Weiss AM, Gedanken A (2002) Sonochemical deposition of silver nanoparticles on silica spheres. Langmuir 18(8):3352–3357

  4. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26(1):62–69

  5. Lu Y, Yin Y, Li ZY, **a Y (2002) Synthesis and self-assembly of Au@SiO2 core−shell colloids. Nano Lett 2(7):785–788

  6. Srnová-Šloufová I (2000) František Lednický, Antonín Gemperle, Juliana Gemperlová, Core−shell (Ag)Au bimetallic nanoparticles: analysis of transmission electron microscopy images. Langmuir 16(25):9928–9935

    Article  Google Scholar 

  7. Zhang C, Zhang T, Zhang Z, Zheng H (2019) Plasmon enhanced fluorescence and Raman scattering by [Au-Ag alloy NP cluster]@SiO(2) core-shell nanostructure. Front Chem 7:647

    Article  PubMed  PubMed Central  Google Scholar 

  8. Nagarajan A, Panchanathan AP, Chelliah P, Satoh H, Inokawa H (2022) FDTD Study on evolution of trimer silver@silica nanospheres to dimer for SERS characteristics. Plasmonics 17(2):647–652

    Article  CAS  PubMed  Google Scholar 

  9. Lu F, Tian Y, Liu M, Su D, Zhang H, Govorov AO, Gang O (2013) Discrete nanocubes as plasmonic reporters of molecular chirality. Nano Lett 13(7):3145–3151

    Article  CAS  PubMed  Google Scholar 

  10. Guo Y, Zhu G, Fang Y (2021) Plasmon–exciton coupling between plasmons and chiral molecules in core–shell structure under circularly polarized light excitation. J Appl Phys 129(4)

  11. Wy Y, Lee S, Wi DH, Han SW (2018) Colloidal clusters of bimetallic core-shell nanoparticles for enhanced sensing of hydrogen in aqueous solution. Part Part Syst Charact 35(5)

  12. Guntner AT, Schenk FM (2023) Environmental formaldehyde sensing at room temperature by smartphone-assisted and wearable plasmonic nanohybrids. Nanoscale 15(8):3967–3977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chaâbani W, Proust J, Ouellet S, Movsesyan A, Béal J, Bachelot R, Xu T, Baudrion A-L, Adam P-M, Boudreau D, Chehaidar A, Plain J (2021) Si@Au core–shell nanostructures: toward a new platform for controlling optical properties at the nanoscale. The Journal of Physical Chemistry C 125(37):20606–20616

    Article  Google Scholar 

  14. Lee S, Hwang H, Lee W, Schebarchov D, Wy Y, Grand J, Auguié B, Wi DH, Cortés E, Han SW (2020) Core–shell bimetallic nanoparticle trimers for efficient light-to-chemical energy conversion. ACS Energy Lett 5(12):3881–3890

    Article  CAS  Google Scholar 

  15. Li Z, Käll M, Xu H (2008) Optical forces on interacting plasmonic nanoparticles in a focused Gaussian beam. Physical Rev B 77(8)

  16. Chen Y, Wu H, Li Z, Wang P, Yang L, Fang Y (2012) The study of surface plasmon in Au/Ag core/shell compound nanoparticles. Plasmonics 7(3):509–513

    Article  CAS  Google Scholar 

  17. Prodan E, Radloff C, Halas N, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science (American Association for the Advancement of Science) 302(5644):419–422

    Article  CAS  Google Scholar 

  18. Graf C (2002) Alfons Van Blaaderen, Metallodielectric colloidal core−shell particles for photonic applications. Langmuir 18(2):524–534

    Article  CAS  Google Scholar 

  19. Dali Shao HS (2012) Mingpeng Yu, Jie Lian, and Shayla Sawyer, Enhanced ultraviolet emission from poly(vinyl alcohol) ZnO nanoparticles using a SiO2−Au core/shell structure. Nano Lett 12(11):5840–5844

    Article  PubMed  Google Scholar 

  20. Chen H, Sun Z, Ni W, Woo KC, Lin HQ, Sun L, Yan C, Wang J (2009) Plasmon coupling in clusters composed of two-dimensionally ordered gold nanocubes. Small 5(18):2111–2119

    Article  CAS  PubMed  Google Scholar 

  21. Guan Z, Gao N, Jiang XF, Yuan P, Han F, Xu QH (2013) Huge enhancement in two-photon photoluminescence of Au nanoparticle clusters revealed by single-particle spectroscopy. J Am Chem Soc 135(19):7272–7277

    Article  CAS  PubMed  Google Scholar 

  22. Sinzig J, Quinten M (1994) Scattering and absorption by spherical multilayer particles. Appl Phys Solid Surf 58(2):157–162

    Article  Google Scholar 

  23. Inoue M, Ohtaka K (1983) Surface enhanced Raman scattering by metal spheres. I:Cluster Effect. J Phys Soc Jpn 52(11):3853–3864

  24. Mühlig S, Menzel C, Rockstuhl C, Lederer F (2011) Multipole analysis of meta-atoms. Metamaterials 5(2):64–73

    Article  Google Scholar 

  25. Ibrahim O, Lee S, Kim SW, Pyun SB, Woods C, Cho EC, Park S-J, Fakhraai Z (2021) Optical magnetic multipolar resonances in large dynamic metamolecules. J Phys Chem C 125(30):16605–16619

    Article  CAS  Google Scholar 

  26. Grahn P, Shevchenko A, Kaivola M (2012) Electromagnetic multipole theory for optical nanomaterials. New J Phys 14(9):93033

    Article  Google Scholar 

  27. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379

    Article  CAS  Google Scholar 

  28. Hu L, Huang Y, Fang L, Chen G, Wei H, Fang Y (2015) Fano resonance assisting plasmonic circular dichroism from nanorice heterodimers for extrinsic chirality. Sci Rep 5(1):16069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tian X, Sun S, Leong ESP, Zhu G, Teng J, Zhang B, Fang Y, Ni W, Zhang CY (2020) Fano-like chiroptical response in plasmonic heterodimer nanostructures. Phys Chem Chem Phys 22(6):3604–3610

    Article  CAS  PubMed  Google Scholar 

  30. Yin X, Schäferling M, Metzger B, Giessen H (2013) Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model. Nano Lett 13(12):6238–6243

    Article  CAS  PubMed  Google Scholar 

  31. Zhu G, Sun Z, Liu J, Fang Y (2023) Multipole analysis of the extinction cross section and circular dichroism of chiral metamolecules with optical theorem. Advanced Optical Materials 11(9):2202677

    Article  CAS  Google Scholar 

  32. Lu Y, Yao G, Sun K, Huang Q (2015) β-Cyclodextrin coated SiO2@Au@Ag core–shell nanoparticles for SERS detection of PCBs. Phys Chem Chem Phys 17(33):21149–21157

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (NSFC) (Grant No. 12074054, 12274054).

Author information

Authors and Affiliations

Authors

Contributions

Y.F. directed the project. J.L. did the simulations and analyzed the simulation data. R.Y. did the experiment and analyzed the experimental data. N.G. and Y.C. discussed the results and analysis. J.L. and R.Y. wrote the manuscript. All of the authors revised the manuscript.

Corresponding author

Correspondence to Yurui Fang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Yan, R., Gao, N. et al. The Multipolar Contribution and Plasmon Hybridization in Core–Shell Clusters. Plasmonics (2024). https://doi.org/10.1007/s11468-023-02186-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-023-02186-0

Keywords

Navigation