Log in

Design and Simulation of a Terahertz Frequency Filter Based on Plasmonic SIS Waveguide Coupled with a Split Ring Resonator for Refractive Index Sensing Applications

  • Research
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Terahertz waveguides and resonators have brought numerous applications from biomedical to modern communications. In this paper, we have demonstrated numerically a straight semiconductor-insulator-semiconductor(SIS) waveguide attached to a split ring resonator, which acts as a terahertz frequency filter and can be used for refractive index sensing. The device’s transmission properties have been studied using the finite element method. To fix the third dimension of the device, that is the depth of the waveguide the effective mode index and power density calculations are done for the propagating mode. The frequency tuning of the filter is achieved by changing the geometric parameters of the waveguide and resonator system such as ring radii and split width. Both the symmetric and antisymmetric modes of the split ring show almost the same rate of change of resonance frequency with the change in geometric parameters. To demonstrate the importance of the split position, the transmittance is studied by placing the split at different positions on the ring. We obtained the same transmittance for the split at left and right positions, whereas the split at the top and bottom shows different transmittance similar to the transmittance of a ring resonator. The symmetric and antisymmetric modes of the split ring are calculated for refractive index sensing and the highest sensitivity of 0.741 THz/ refractive index unit (RIU) for the symmetric mode as expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. Tao J, Hu B, He XY, Wang QJ (2013) Tunable subwavelength terahertz plasmonic stub waveguide filters. IEEE Trans Nanotechnol 12(6):1191–1197

    Article  CAS  Google Scholar 

  2. Salgueiro JR, Kivshar YS (2010) Nonlinear plasmonic directional couplers. Appl Phys Lett 97(8):081106

    Article  Google Scholar 

  3. Tong L, Wei H, Zhang S, Xu H (2014) Recent advances in plasmonic sensors. Sensors 14(5):7959–7973

    CAS  PubMed  Google Scholar 

  4. Farmani A, Mir A, Bazgir M, Zarrabi FB (2018) Highly sensitive nano-scale plasmonic biosensor utilizing Fano resonance metasurface in THz range: numerical study. Physica E 104:233–240

    Article  CAS  Google Scholar 

  5. Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4(2):83–91

    Article  CAS  Google Scholar 

  6. Aydin K, Bulu I, Guven K, Kafesaki M, Soukoulis CM, Ozbay E (2005) Investigation of magnetic resonances for different split-ring resonator parameters and designs. New J Phys 7(1):168

    Article  Google Scholar 

  7. Ebrahimi A, Scott J, Ghorbani K (2018) Differential sensors using microstrip lines loaded with two split-ring resonators. IEEE Sens J 18(14):5786–5793

    Article  CAS  Google Scholar 

  8. Wu PC, Hsu W-L, Chen WT, Huang Y-W, Liao CY, Liu AQ, Zheludev NI, Sun G, Tsai DP (2015) Plasmon coupling in vertical split-ring resonator metamolecules. Sci Rep 5(1):1–5

    Google Scholar 

  9. Rafiee E, Negahdari R, Emami F (2019) Plasmonic multi channel filter based on split ring resonators: application to photothermal therapy. Photonics Nanostructures-Fundam Appl 33:21–28

  10. Butt M, Khonina S, Kazanskiy N (2019) A multichannel metallic dual nano-wall square split-ring resonator: design analysis and applications. Laser Phys Lett 16(12):126201

    Article  CAS  Google Scholar 

  11. Zhang Y, Kuang Y, Zhang Z, Tang Y, Han J, Wang R, Cui J, Hou Y, Liu W (2019) High-sensitivity refractive index sensors based on Fano resonance in the plasmonic system of splitting ring cavity-coupled MIM waveguide with tooth cavity. Appl Phys A 125(1):1–5

    Article  Google Scholar 

  12. Zhang Z, Yang J, He X, Han Y, Huang J, Chen D (2020) Tunable plasmon-induced transparency and slow light in terahertz chipscale semiconductor plasmonic waveguides. J Phys D: Appl Phys 53(31):315101

    Article  CAS  Google Scholar 

  13. Zhang X, Xu Q, **a L, Li Y, Gu J, Tian Z, Ouyang C, Han J, Zhang W (2020) Terahertz surface plasmonic waves: a review. Adv Photonics 2(1):014001

    Article  CAS  Google Scholar 

  14. Negahdari R, Rafiee E, Kordrostami Z (2023) A sensitive biosensor based on the plasmonic-graphene configuration for detection of COVID-19 virus. Plasmonics, pp 1–11

  15. Pirrone D, Ferraro A, Zografopoulos DC, Fuscaldo W, Szriftgiser P, Ducournau G, Beccherelli R (2022) Metasurface-based filters for high data rate THz wireless communication: experimental validation of a 14 Gbps OOK and 104 Gbps QAM-16 wireless links in the 300 GHz band. IEEE Trans Wirel Commun 21(10):8688–8697

    Article  Google Scholar 

  16. Xu W, **e L, Ying Y (2017) Mechanisms and applications of terahertz metamaterial sensing: a review. Nanoscale 9(37):13864–13878

    Article  CAS  PubMed  Google Scholar 

  17. Navaratna N, Tan YJ, Kumar A, Gupta M, Singh R (2023) On-chip topological THz biosensors. Appl Phys Lett 123(3)

  18. Bi H, Yang M, You R (2023) Advances in terahertz metasurface graphene for biosensing and application. Discover Nano 18(1):63

    Article  CAS  PubMed  Google Scholar 

  19. Sengupta K, Nagatsuma T, Mittleman DM (2018) Terahertz integrated electronic and hybrid electronic-photonic systems. Nat Electron 1(12):622–635

    Article  Google Scholar 

  20. Murray WA, Barnes WL (2007) Plasmonic materials. Adv Mater 19(22):3771–3782

    Article  CAS  Google Scholar 

  21. Maier SA (2007) Surface plasmon polaritons at metal/insulator interfaces. In: Plasmonics: Fundamentals and Applications, pp 11–15. Springer

  22. Oulton RF, Sorger VJ, Genov D, Pile D, Zhang X (2008) A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat Photonics 2(8):496–500

  23. Naik GV, Kim J, Boltasseva A (2011) Oxides and nitrides as alternative plasmonic materials in the optical range. Opt Mater Express 1(6):1090–1099

    Article  CAS  Google Scholar 

  24. Law S, Liu R, Wasserman D (2014) Doped semiconductors with band-edge plasma frequencies. J Vac Sci Technol B Nanotechnol Microelectronics: Materials, Processing, Measurement, and Phenomena 32(5):052601

    Article  Google Scholar 

  25. Isaac TH, Barnes WL, Hendry E (2008) Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons. Appl Phys Lett 93(24):241115

    Article  Google Scholar 

  26. Maier SA et al (2007) Plasmonics: fundamentals and applications 1:25–37. Springer

  27. Zhang Z, Yang J, He X, Zhang J, Huang J, Chen D, Han Y (2018) Plasmonic refractive index sensor with high figure of merit based on concentric-rings resonator. Sensors 18(1):116

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chen J, Li Y, Chen Z, Peng J, Qian J, Xu J, Sun Q (2014) Tunable resonances in the plasmonic split-ring resonator. IEEE Photonics J 6(3):1–6

    Article  Google Scholar 

  29. Liang W, Huang Y, Xu Y, Lee RK, Yariv A (2005) Highly sensitive fiber Bragg grating refractive index sensors. Appl Phys Lett 86(15)

  30. Hou B, Li Z, He L, Yi Z, Song Q, Yang H, Yi Y, Li H (2023) Enhanced quasi-BIC refractive index sensing based on controlling the fermi energy of Dirac semimetal metasurface. Opt Laser Technol 164

  31. ZamaniNoughabi S, Nooramin AS, Soleimani M (2023) A plasmonic refractive index sensor using a water-based metamaterial absorber. AUT J Electr Eng

  32. Yan D, Li X, Ma C, Qiu G, Cao M, Li J, Guo S (2021) Terahertz refractive index sensing based on gradient metasurface coupled confined spoof surface plasmon polaritons mode. IEEE Sens J 22(1):324–329

    Article  Google Scholar 

  33. Wang Y, Cheng W, Qin J, Han Z (2019) Terahertz refractive index sensor based on the guided resonance in a photonic crystal slab. Opt Commun 434:163–166

    Article  CAS  Google Scholar 

  34. Zafar R, Salim M (2015) Enhanced figure of merit in Fano resonance-based plasmonic refractive index sensor. IEEE Sens J 15(11):6313–6317

    Article  CAS  Google Scholar 

  35. Panda A, Pukhrambam PD, Keiser G (2020) Performance analysis of graphene-based surface plasmon resonance biosensor for blood glucose and gas detection. Appl Phys A 126(3):1–12

    Article  Google Scholar 

Download references

Funding

Sherin Thomas gratefully acknowledges the National Institute of Technology Karnataka Surathkal for providing the research fellowship. The authors thank the institute for providing the research facilities.

Author information

Authors and Affiliations

Authors

Contributions

Sherin Thomas contributed to the conceptualization, design, study, analysis, and writing the first draft. Mandeep Singh interpreted the data and reviewed the manuscript. Satyanarayan M.N. did the project administration, conceptualization, review, and editing.

Corresponding author

Correspondence to M. N. Satyanarayan.

Ethics declarations

Ethical Approval

Not applicable

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, S., Singh, M. & Satyanarayan, M.N. Design and Simulation of a Terahertz Frequency Filter Based on Plasmonic SIS Waveguide Coupled with a Split Ring Resonator for Refractive Index Sensing Applications. Plasmonics 19, 1589–1598 (2024). https://doi.org/10.1007/s11468-023-02102-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-02102-6

Keywords

Navigation