Log in

Numerical Simulation of Fiber Optic Biosensor Consisting of Metal/Sc2O3 Enhancing by Using Aluminum Alloy for Hydrotherapy Applications

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Water purity plays a key role in medical applications such as clinical diagnosis, drug delivery, sterilization, and patient management. One of the most important medical treatments in which the quality of water is very important is hydrotherapy. Most of the patients have weakened immune systems due to existing infections, making them highly vulnerable to new infections from contaminated water in hydrotherapy pools. Therefore, the hydrotherapy water should be tested to ensure the safety of the patients’ lives. In this research, a fiber optic bilayer sensor consisting of silver, copper, platinum, nickel, and gold as the metal layer, and scandium oxide as the second layer, has been numerically simulated to test water purity for hydrotherapy applications. The proposed configuration gives water purity detection with a maximum sensitivity of 4594.0°/RIU for Ni/Sc2O3 while the contacting length is considered as 10 mm, which is much higher than the conventional sensor. It is a topic of interest to researchers in related areas. Ag/Sc2O3 exhibits the highest figure of merit value compared to other materials. At the second part of the study, the effect of a silver-aluminum alloy has been investigated to enhance the quality factor of the winner structure (Ag/Sc2O3). The most efficient silver-aluminum combination ratio is found to be 0.1:0.9, which enhances the sensor quality factor from 40.50 to 60.45 (RIU−1) in aqueous media, while the refractive index of water changes from 1.33 to 1.34.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of Data and Materials

The data that support the findings of this study are available on request from the corresponding author.

References

  1. Stewart BM (2000) The production of high-purity water in the clinical laboratory. Lab Med 31(11):605–611. https://doi.org/10.1309/5LMG-8DDL-GTE6-08F6

    Article  Google Scholar 

  2. Burghart R (1996) The purity of water at hospital and at home as a problem of intercultural understanding. Med Anthropol Q 10(1):63–74. https://doi.org/10.1525/maq.1996.10.1.02a00070

    Article  CAS  PubMed  Google Scholar 

  3. Laroo H (2017) The fragile and flawed existence of questionable water purity as used in wet chemistry and in particular where such water is destined for medical applications such as vaccines. Int J Vaccines Vaccin 4(4). https://doi.org/10.15406/ijvv.2017.04.00087

  4. Glorieux G, Neirynck N, Veys N, Vanholder R (2012) Dialysis water and fluid purity: more than endotoxin. Nephrol Dial Transplant 27(11):4010–4021. https://doi.org/10.1093/ndt/gfs306

    Article  CAS  PubMed  Google Scholar 

  5. Um-e-Kalsoom, Khan S, Ahmad I (2020) Impact of hemodialysis on the wellbeing of chronic kidney diseases patients: a pre-post analysis. Middle East Curr Psychiatry 27(1). https://doi.org/10.1186/s43045-020-00060-x

  6. Castro-Sánchez AM, Matarán-Peñarrocha GA, Lara-Palomo I, Saavedra-Hernández M, Arroyo-Morales M, Moreno-Lorenzo C (2012) Hydrotherapy for the treatment of pain in people with multiple sclerosis: a randomized controlled trial. Evidence-based Complement Altern Med 2012. https://doi.org/10.1155/2012/473963

  7. Chowdhury RS, Islam MD, Akter K, Sarkar MAS, Roy T, Rahman ST (2021) Therapeutic aspects of hydrotherapy: a review. Bangladesh J Med 32(2):138–141. https://doi.org/10.3329/bjm.v32i2.53791

  8. Mooventhan A, Nivethitha L (2014) Scientific evidence-based effects of hydrotherapy on various systems of the body. N Am J Med Sci 6(5):199–209. https://doi.org/10.4103/1947-2714.132935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Esmailidastjerdipour P, Shahshahani F (2023) Quality enhancement of fiber optic surface plasmon resonance biosensor consisting of metal and barium titanate layer by using aluminum alloy in medical applications. Plasmonics. https://doi.org/10.1007/s11468-023-02013-6

    Article  Google Scholar 

  10. Qu JH et al (2020) Expanding a portfolio of (FO-) SPR surface chemistries with the Co(III)-NTA oriented immobilization of His6-tagged bioreceptors for applications in complex matrices. ACS sensors 5(4):960–969. https://doi.org/10.1021/acssensors.9b02227

    Article  CAS  PubMed  Google Scholar 

  11. Esmailidastjerdipour P, Shahshahani F (2023) Numerical simulation of surface plasmon resonance optical fiber biosensor enhanced by using alloys for medical application. Sens Imaging 24(1):1–19. https://doi.org/10.1007/s11220-022-00409-y

    Article  Google Scholar 

  12. Patel SK et al (2023) Terahertz metasurface-based refractive index sensor for amino acid detection: a numerical approach. IEEE Trans Nanobioscience 22:614–621. https://doi.org/10.1109/TNB.2022.3222446

  13. Du B, Yang Y, Zhang Y, Yang D (2019) SPR label-free biosensor with oxide-metal-oxide-coated D-typed optical fiber: a theoretical study. Plasmonics 14(2):457–463. https://doi.org/10.1007/s11468-018-0824-1

    Article  CAS  Google Scholar 

  14. Karki B, Salah NH, Srivastava G, Muduli A, Yadav RB (2023) A simulation study for dengue virus detection using surface plasmon resonance sensor heterostructure of silver, barium titanate, and cerium oxide. Plasmonics. https://doi.org/10.1007/s11468-023-01907-9

  15. Jha R, Sharma AK (2009) High-performance sensor based on surface plasmon resonance with chalcogenide prism and aluminum for detection in infrared. Opt Lett. https://doi.org/10.1364/ol.34.000749

    Article  PubMed  Google Scholar 

  16. Karki B, Ramya KC, Sandhya Devi RS, Srivastava V, Pal A (2022) Titanium dioxide, black phosphorus and bimetallic layer-based surface plasmon biosensor for formalin detection: numerical analysis. Opt Quantum Electron 54. https://doi.org/10.1007/s11082-022-03875-6

  17. Tabassum R, Gupta BD (2015) Surface plasmon resonance-based fiber-optic hydrogen gas sensor utilizing palladium supported zinc oxide multilayers and their nanocomposite. Appl Opt. https://doi.org/10.1364/ao.54.001032

    Article  PubMed  Google Scholar 

  18. Karki B, Ansari G, Uniyal A, Srivastava V (2023) PtSe2 and black phosphorus employed for sensitivity improvement in the surface plasmon resonance sensor. J Comput Electron 22:106–115. https://doi.org/10.1007/s10825-022-01975-w

  19. Crisp J, Elliott B (2005) Introduction to fiber optics. https://doi.org/10.1016/B978-0-7506-6756-2.X5000-5

    Article  Google Scholar 

  20. Singh TI, Singh P, Karki B (2023) Early detection of chikungunya virus utilizing the surface plasmon resonance comprising a silver-silicon-PtSe2 multilayer structure. Plasmonics 18(3):1173–1180. https://doi.org/10.1007/s11468-023-01840-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dostálek J, Kasry A, Knoll W (2007) Long range surface plasmons for observation of biomolecular binding events at metallic surfaces. Plasmonics. https://doi.org/10.1007/s11468-007-9037-8

    Article  Google Scholar 

  22. Karki B, Jha A, Pal A, Srivastava V (2022) Sensitivity enhancement of refractive index-based surface plasmon resonance sensor for glucose detection. Opt Quantum Electron 54. https://doi.org/10.1007/s11082-022-04004-z

  23. Kretschmann E (1971) Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflächenplasmaschwingungen. Zeitschrift für Phys. https://doi.org/10.1007/BF01395428

    Article  Google Scholar 

  24. Karki B, Uniyal A, Chauhan B, Pal A (2022) Sensitivity enhancement of graphene, zinc sulfide-based surface plasmon resonance biosensor with an Ag metal configuration in visible region. Comput Electron 21:445–452. https://doi.org/10.1007/s10825-022-01854-4

  25. Zeng S, Baillargeat D, Ho HP, Yong KT (2014) Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem Soc Rev. https://doi.org/10.1039/c3cs60479a

    Article  PubMed  Google Scholar 

  26. Esmailidastjerdipour P, Shahshahani F (2023) The optical fiber biosensor enhancement consisting of nanocomposite by using graphene in medical application. Plasmonics. https://doi.org/10.1007/s11468-023-02044-z

    Article  Google Scholar 

  27. Karki B, Uniyal A, Pal A, Srivastava V (2022) Advances in surface plasmon resonance-based biosensor technologies for cancer cell detection. Int J Opt 2022. https://doi.org/10.1155/2022/1476254

  28. Sharma AK, Kaur B (2018) Fiber optic SPR sensing enhancement in NIR via optimum radiation dam** catalyzed by 2D materials. IEEE Photonics Technol Lett. https://doi.org/10.1109/LPT.2018.2874700

    Article  Google Scholar 

  29. Prabowo BA, Purwidyantri A, Liu KC (2018) Surface plasmon resonance optical sensor: a review on light source technology. Biosensors. https://doi.org/10.3390/bios8030080

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mukhtar WM, Halim RM, Dasuki KA, Rashid ARA, Taib NAM (2018) Silver-graphene oxide nanocomposite film-based SPR sensor for detection of Pb2+ ions. https://doi.org/10.1109/SMELEC.2018.8481315

  31. Gupta BD, Sharma A, Singh CD (1993) Evanescent wave absorption sensors based on uniform and tapered fibres. A comparative study of their sensitivities. Int J Optoelectron

  32. Rani M, Shukla S, Sharma NK, Sajal V (2014) Theoretical study of nanocomposites based fiber optic SPR sensor. Opt Commun. https://doi.org/10.1016/j.optcom.2013.10.048

    Article  Google Scholar 

  33. Singh S, Gupta BD (2010) Simulation of a surface plasmon resonance-based fiber-optic sensor for gas sensing in visible range using films of nanocomposites. Meas Sci Technol. https://doi.org/10.1088/0957-0233/21/11/115202

    Article  Google Scholar 

  34. Fu H, Zhang S, Chen H, Weng J (2015) Graphene enhances the sensitivity of fiber-optic surface plasmon resonance biosensor. IEEE Sens J. https://doi.org/10.1109/JSEN.2015.2442276

    Article  Google Scholar 

  35. Socorro-Leránoz AB, Santano D, Del Villar I, Matias IR (2019) Trends in the design of wavelength-based optical fibre biosensors (2008–2018). Biosensors and Bioelectronics: X. https://doi.org/10.1016/j.biosx.2019.100015

    Article  Google Scholar 

  36. Shukla S, Sharma NK, Sajal V (2016) Theoretical study of surface plasmon resonance-based fiber optic sensor utilizing cobalt and nickel films. Brazilian J Phys. https://doi.org/10.1007/s13538-016-0406-7

    Article  Google Scholar 

  37. Tabassum R, Gupta BD (2017) Influence of oxide overlayer on the performance of a fiber optic SPR sensor with Al/Cu layers. IEEE J Sel Top Quantum Electron. https://doi.org/10.1109/JSTQE.2016.2553442

    Article  Google Scholar 

  38. Ma H, Liu X, Gao C, Yin Y (2020) The calculated dielectric function and optical properties of bimetallic alloy nanoparticles. J Phys Chem C. https://doi.org/10.1021/acs.jpcc.9b11154

    Article  Google Scholar 

  39. Gupta BD, Sharma AK (2005) Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study. https://doi.org/10.1016/j.snb.2004.08.030

  40. Mishra AK, Mishra SK, Gupta BD (2015) SPR based fiber optic sensor for refractive index sensing with enhanced detection accuracy and figure of merit in visible region. Opt Commun. https://doi.org/10.1016/j.optcom.2015.01.043

    Article  Google Scholar 

  41. Afsharnia M, Hamidi SM (2018) Design and performance perspectives on fiber optic sensors with plasmonic nanostructures and gratings: a review. IEEE Trans Magn. https://doi.org/10.1109/TMAG.2017.2761754

    Article  Google Scholar 

  42. Regatos D et al (2010) Au/Fe/Au multilayer transducers for magneto-optic surface plasmon resonance sensing. J Appl Phys. https://doi.org/10.1063/1.3475711

    Article  Google Scholar 

  43. Tabassum R, Kant R (2020) Recent trends in surface plasmon resonance based fiber–optic gas sensors utilizing metal oxides and carbon nanomaterials as functional entities. Sens Actuators B Chem. https://doi.org/10.1016/j.snb.2020.127813

  44. Meng QQ, Zhao X, Lin CY, Chen SJ, Ding YC, Chen ZY (2017) Figure of merit enhancement of a surface plasmon resonance sensor using a low-refractive-index porous silica film. Sensors (Switzerland). https://doi.org/10.3390/s17081846

    Article  PubMed Central  Google Scholar 

  45. Lokhande CD (1991) Chemical deposition of metal chalcogenide thin films. Mater Chem Phys 27(1):1–43. https://doi.org/10.1016/0254-0584(91)90158-Q

    Article  CAS  Google Scholar 

  46. Chauvin A, Txia Cha Heu W, Tessier PY, El Mel AA (2016) Impact of the morphology and composition on the dealloying process of co-sputtered silver–aluminum alloy thin films. Basical Solid State Phys. https://doi.org/10.1002/pssb.201600604

  47. Putkonen M, Nieminen M, Niinistö J, Niinistö L (2001) Surface-controlled deposition of Sc2O3 thin films by atomic layer epitaxy using β-diketonate and organometallic precursors. Chem Mater 13. https://doi.org/10.1021/cm011138z

Download references

Author information

Authors and Affiliations

Authors

Contributions

Parisa Esmailidastjerdipour and Fateme Shahshahani do all the research together. All of the authors read the final manuscripts.

Corresponding author

Correspondence to Parisa Esmailidastjerdipour.

Ethics declarations

Ethical Approval

This research does not include human or animal subjects.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esmailidastjerdipour, P., Shahshahani, F. Numerical Simulation of Fiber Optic Biosensor Consisting of Metal/Sc2O3 Enhancing by Using Aluminum Alloy for Hydrotherapy Applications. Plasmonics 19, 1443–1452 (2024). https://doi.org/10.1007/s11468-023-02086-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-02086-3

Keywords

Navigation