Log in

Ultracompact Electrochemical Metallization–Based Tunable Filter with Plasmonic Waveguide

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, an ultra-compact electrochemical metallization–based tunable filter with a simple metal–insulator–metal (MIM) waveguide system was proposed. The device comprises a MIM waveguide and a resonator with active electrodes. The formation and rupture of conductive filaments in the resonant cavity because of electrochemical metallization can change the resonant wavelength, which leads to the tunability of the transmission characteristics of the filter. The transmission characteristics of band-stop filter and band-pass filter are analyzed by finite element method (FEM) simulation. Numerical results demonstrate that the transmission line of the filter can be shifted by forming and rupture of the conductive filament, which is controlled by changing the applied electric field in the case of fixed structural parameters. The proposed compact tunable filter is a potential candidate for a low power consumption large-scale integrated photonic circuit for applications in optical communication, modulation, and computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets generated during the current study are not publicly available but are available from the corresponding author on reasonable request.

References

  1. Aparna U, Kumar MS (2022) Ultra-compact plasmonic unidirectional wavelength multiplexer/demultiplexer based on slot cavities. Opt Rev 29:51–58. https://doi.org/10.1007/s10043-022-00722-7

    Article  Google Scholar 

  2. Yun-Fei Y, Guan-Mao Z, Li-Tao Q et al (2019) Design on the convex ring MIM structure filter based on surface plasmon polaritons. Acta Photonica Sinica

  3. Yang H, Chen Y, **ao G et al (2020) MIM tunable plasmonic filter embedded with symmetrical sector metal resonator. MIM Tunable Plasmonic Filter Embedded with Symmetrical Sector Metal Resonator 40:1124001(in chinese). https://doi.org/10.3788/aos202040.1124001

  4. Zheng G, Su W, Chen Y et al (2012) Band-stop filters based on a coupled circular ring metal–insulator–metal resonator containing nonlinear material. J Opt 14:055001

    Article  Google Scholar 

  5. Khani S, Danaie M, Rezaei P (2018) Double and triple-wavelength plasmonic demultiplexers based on improved circular nanodisk resonators. Opt Eng 57:107102

    Article  Google Scholar 

  6. Zhan S, Kong D, Cao G et al (2013) Analogy of plasmon induced transparency in detuned U-resonators coupling to MDM plasmonic waveguide. Solid State Commun 174:50–54

    Article  CAS  Google Scholar 

  7. Khani S, Afsahi M (2023) Optical refractive index sensors based on plasmon-induced transparency phenomenon in a plasmonic waveguide coupled to stub and nano-disk resonators. Plasmonics 18:255–270. https://doi.org/10.1007/s11468-022-01772-y

    Article  CAS  Google Scholar 

  8. Wang YL, Li SL, Zhang YY et al (2016) Ultrasharp Fano resonances based on the circular cavity optimized by a metallic nanodisk. IEEE Photonics J 8:8. https://doi.org/10.1109/jphot.2016.2628805

    Article  CAS  Google Scholar 

  9. Chen F, Xu YP (2016) Tunable power splitter based on MIM waveguide-rectangle cavity system with Kerr material. Mod Phys Lett B 30:9. https://doi.org/10.1142/s0217984916503760

    Article  CAS  Google Scholar 

  10. Kotb R, Ismail Y, Swillam MA (2015) Nonlinear tuning techniques of plasmonic nano-filters. Opt Commun 336:306–314. https://doi.org/10.1016/j.optcom.2014.09.062

    Article  CAS  Google Scholar 

  11. Ye YC, **e YY, Song TT et al (2022) Integrated plasmonic full adder based on cascaded rectangular ring resonators for optical computing. Opt Laser Technol 156.  https://doi.org/10.1016/j.optlastec.2022.108474

  12. Banerjee W, Liu Q, Hwang H (2020) Engineering of defects in resistive random access memory devices. J Appl Phys 127:16. https://doi.org/10.1063/1.5136264

    Article  CAS  Google Scholar 

  13. Yoon JH, Chang MY, Khwa WS et al (2022) A 40-nm 118.44-TOPS/W voltage-sensing compute-in-memory RRAM macro with write verification and multi-bit encoding. IEEE J Solid-State Circuits 57:845–857. https://doi.org/10.1109/jssc.2022.3141370

    Article  Google Scholar 

  14. Wang CH, Si ZG, Jiang XF et al (2022) Multi-state memristors and their applications: an overview. IEEE J Emerg Sel Top Circuits Syst 12:723–734. https://doi.org/10.1109/jetcas.2022.3223295

    Article  Google Scholar 

  15. Chang CF, Chen JY, Huang GM et al (2018) Revealing conducting filament evolution in low power and high reliability Fe3O4/Ta2O5 bilayer RRAM. Nano Energy 53:871–879. https://doi.org/10.1016/j.nanoen.2018.09.029

    Article  CAS  Google Scholar 

  16. Qi L, Sen L, Shibing L et al (2017) Progress of cation-based resistive random access memory. Mater China

  17. Lee SH, Park HL, Kim MH et al (2019) Interfacial triggering of conductive filament growth in organic flexible memristor for high reliability and uniformity. ACS Appl Mater Interfaces 11:30108–30115. https://doi.org/10.1021/acsami.9b10491

    Article  CAS  PubMed  Google Scholar 

  18. Singh L, Jain S, Kumar M (2019) Electrically writable silicon nanophotonic resistive memory with inherent stochasticity. Opt Lett 44:4020–4023. https://doi.org/10.1364/ol.44.004020

    Article  CAS  PubMed  Google Scholar 

  19. Singh L, Kaushik V, Rajput S et al (2021) Light assisted electro-metallization in resistive switch with optical accessibility. J Lightwave Technol 39:5869–5874. https://doi.org/10.1109/jlt.2021.3091970

    Article  CAS  Google Scholar 

  20. Singh L, Srivastava S, Rajput S et al (2021) Optical switch with ultra high extinction ratio using electrically controlled metal diffusion. Opt Lett 46:2626–2629. https://doi.org/10.1364/ol.428710

    Article  CAS  PubMed  Google Scholar 

  21. Tian Y, Zhang SW, Tan WS (2021) An ultra-compact design of plasmonic memristor with low loss and high extinction efficiency based on enhanced interaction between filament and concentrated plasmon. Photonics 8:11. https://doi.org/10.3390/photonics8100437

    Article  CAS  Google Scholar 

  22. Chen ZL, Liu WX, Zhang BY et al (2023) Nanoscale and ultra-high extinction ratio optical memristive switch based on plasmonic waveguide with square cavity. Appl Opt 62:27–33. https://doi.org/10.1364/ao.476510

    Article  CAS  PubMed  Google Scholar 

  23. Peng X, Li HJ, Wu CN et al (2013) Research on transmission characteristics of.aperture-coupled square-ring resonator based filter. Opt Commun 294:368–371. https://doi.org/10.1016/j.optcom.2012.12.026

    Article  CAS  Google Scholar 

  24. Zhu JH, Huang XG, Tao J et al (2012) Nanometeric plasmonic refractive index senor. Opt Commun 285:3242–3245. https://doi.org/10.1016/j.optcom.2012.02.097

    Article  CAS  Google Scholar 

  25. Lin X, Huang X, (2009) Numerical modeling of a teeth-shaped nanoplasmonic waveguide filter. J Opt Soc Am B 26:1263–1268. https://doi.org/10.1364/JOSAB.26.001263

    Article  CAS  Google Scholar 

  26. Liu P, Yan S, Shen L et al (2023) A high-sensitivity refractive index nano-sensor structure based on MIM waveguide. In: J Phys: Conference Series. IOP Publishing, p 012082

  27. Zhu J, Yin JG, Li N et al (2022) Novel glucose concentration sensor with unique resonance lineshapes in optical cavity. Measurement 194.  https://doi.org/10.1016/j.measurement.2022.111006

  28. Zafar R, Salim M (2017) Analysis of asymmetry of Fano resonance in plasmonic metal-insulator-metal waveguide. Photonics Nanostruct 23:1–6. https://doi.org/10.1016/j.photonics.2016.11.001

    Article  Google Scholar 

  29. Kim S, Choi S, Lu W (2014) Comprehensive physical model of dynamic resistive switching in an oxide memristor. ACS Nano 8:2369–2376

    Article  CAS  PubMed  Google Scholar 

  30. Jemii E, Belkhiria M, Aouaini F et al (2022) Electrothermal analyses in Cu/ZrO2/Pt CBRAM memory using a dual-phase-lag model. J Comput Electron 21:792–801. https://doi.org/10.1007/s10825-022-01907-8

    Article  CAS  Google Scholar 

  31. Napolean A, Sivamangai N, Rajesh S et al (2022) Effects of ambient and annealing temperature in HfO2 based RRAM device modeling and circuit-level implementation. ECS J Solid State Sci Technol 11:023012

    Article  Google Scholar 

  32. Robinson JT, Chen L, Lipson M (2008) On-chip gas detection in silicon optical microcavities. Opt Express 16:4296–4301

    Article  CAS  PubMed  Google Scholar 

  33. **e Y, Huang Y, Che H et al (2015) Theoretical investigation of a plasmonic sensor based on a metal–insulator–metal waveguide with a side-coupled nanodisk resonator. J Nanophotonics 9:093099–093099

    Article  CAS  Google Scholar 

  34. Zaki AO, Kirah K, Swillam MA (2016) Integrated optical sensor using hybrid plasmonics for lab on chip applications. J Opt 18:085803

    Article  Google Scholar 

  35. Khani S, Danaie M, Rezaei P (2019) Tunable single-mode bandpass filter based on metal–insulator–metal plasmonic coupled U-shaped cavities. IET Optoelectron 13:161–171

    Article  Google Scholar 

  36. Zegaar I, Hocini A, Harhouz A et al (2022) Design of a double-mode plasmonic wavelength filter using a defective circular nano-disk resonator coupled to two MIM waveguides. Prog Electromagn Res Lett 104:67–75

    Article  CAS  Google Scholar 

  37. Mcmullen R, Mishra A, Slinker JD (2022) Straightforward fabrication of sub-10 nm nanogap electrode pairs by electron beam lithography. Precis Eng J Int Soc Precis Eng Nanotechnol 77:275–280. https://doi.org/10.1016/j.precisioneng.2022.06.004

    Article  Google Scholar 

  38. Zhang ZJ, Wang WT, Dong ZY et al (2022) The trends of in situ focused ion beam technology: toward preparing transmission electron microscopy lamella and devices at the atomic scale. Adv Electron Mater 8.  https://doi.org/10.1002/aelm.202101401

  39. Khani S, Hayati M (2021) An ultra-high sensitive plasmonic refractive index sensor using an elliptical resonator and MIM waveguide. Superlattices Microstruc 156.  https://doi.org/10.1016/j.spmi.2021.106970

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 61735010, 31671580, and 61601183); Natural Science Foundation of Henan Province (Nos. 232300421391, 222300420233, and 162300410190); and Program for Science &Technology Innovation Talents in Universities of Henan Province (No. 18HASTIT023).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written with contributions from all the authors. All the authors have given approval to the final version of the manuscript. The detailed contributions of each co-author are as follows: conceived and designed the devices: Zhiliang Chen and Kai Wu. Performed the numerical simulation: Zhiliang Chen and Kai Wu. Analyzed the data: Zhiliang Chen, Kai Wu, Zhongyang Li, Juan Xu, and Pibin Bing. Drafted the manuscript: Zhiliang Chen and Kai Wu. Revised the manuscript: Zhiliang Chen, Kai Wu, Zhongyang Li, Juan Xu, Pibin Bing, Hongtao Zhang, Lian Tan, and Jianquan Yao. Contributed analysis tools: Zhongyang Li, Pibin Bing, and Jianquan Yao.

Corresponding author

Correspondence to Zhiliang Chen.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Wu, K., Li, Z. et al. Ultracompact Electrochemical Metallization–Based Tunable Filter with Plasmonic Waveguide. Plasmonics 18, 1019–1028 (2023). https://doi.org/10.1007/s11468-023-01832-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-01832-x

Keywords

Navigation