Log in

Ellipsoid Defect in Trapezoidal-Shaped Cavities Coupled to Multi-resonance Plasmonic Metal–Insulator-Metal Waveguide Toward Ultrasensitive Temperature Sensor

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A multi-resonance plasmonic temperature and refractive index (RI) sensor is developed based on a metal–insulator-metal (MIM) waveguide with two trapezoidal-shaped cavities and an elliptical island inside. Different dielectrics including ethanol, chloroform, carbon disulfide, glycerin, and polydimethylsiloxane (PDMS) have been utilized for the temperature investigation in the range of − 50 to 70 °C. Results revealed the maximum temperature sensitivity (TS) of 1.058 nm/°C and the maximum temperature figure of merit (FoM) (FoMT) of 0.0141 1/°C which correspond to the carbon disulfide and PDMS in the first resonance (FR), respectively. The RI-sensitivity (RIS) of this sensor at the first and second resonance (SR) is 1328.57 nm per RI unit (RIU) and 735.71 nm/RIU as well as its FoM which is 36 1/RIU and 31.31 1/RIU, respectively. This paper confirms the high capabilities for measuring the temperature and RI in a wide spectral range of wavelengths (600 to 3000 nm), and multi-resonance sensing. This reveals significant potential in optical and photonic circuit applications such as different quantities detection, including hemoglobin and cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Liu X, Swihart MT (2014) Heavily-doped colloidal semiconductor and metal oxide nanocrystals: an emerging new class of plasmonic nanomaterials. Chem Soc Rev 43(11):3908–3920

    Article  CAS  PubMed  Google Scholar 

  2. King ME, Guzman MVF, Ross MB (2022) Material strategies for function enhancement in plasmonic architectures. Nanoscale 14(3):602–611

    Article  CAS  PubMed  Google Scholar 

  3. Takemura K (2021) Surface plasmon resonance (SPR)-and localized SPR (LSPR)-based virus sensing systems: optical vibration of nano-and micro-metallic materials for the development of next-generation virus detection technology. Biosensors 11(8):250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yesudasu V, Pradhan HS, Pandya RJ (2021) Recent progress in surface plasmon resonance based sensors: a comprehensive review. Heliyon 7(3):e06321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Man B et al (2022) MoS2-spaced bimetal composite structure as SERS-SPR sensor for glucose detection. J Alloy Compd 902:163789

    Article  CAS  Google Scholar 

  6. Pinton N, Grant J, Collins S, Cumming DR (2018) Exploitation of magnetic dipole resonances in metal–insulator–metal plasmonic nanostructures to selectively filter visible light. ACS Photonics 5(4):1250–1261

    Article  CAS  Google Scholar 

  7. Cennamo N, Arcadio F, Marletta V, Baglio S, Zeni L, Andò B (2020) A magnetic field sensor based on SPR-POF platforms and ferrofluids. IEEE Trans Instrum Meas 70:1–10

    Google Scholar 

  8. Khonina S, Kazanskiy N, Butt M, Kaźmierczak A, Piramidowicz R (2021) Plasmonic sensor based on metal-insulator-metal waveguide square ring cavity filled with functional material for the detection of CO2 gas. Opt Express 29(11):16584–16594

    Article  CAS  PubMed  Google Scholar 

  9. Khani S, Hayati M (2022) Optical sensing in single-mode filters base on surface plasmon H-shaped cavities. Optics Communications 505:127534

    Article  CAS  Google Scholar 

  10. Rakhshani MR, Mansouri-Birjandi MA (2018) Engineering hexagonal array of nanoholes for high sensitivity biosensor and application for human blood group detection. IEEE Trans Nanotechnol 17(3):475–481

    Article  CAS  Google Scholar 

  11. Khani S, Hayati M (2021) An ultra-high sensitive plasmonic refractive index sensor using an elliptical resonator and MIM waveguide. Superlattices Microstruct 156:106970

    Article  CAS  Google Scholar 

  12. Rakhshani MR, Mansouri-Birjandi MA (2018) A high-sensitivity sensor based on three-dimensional metal–insulator–metal racetrack resonator and application for hemoglobin detection. Photonics and Nanostructures-Fundamentals and Applications 32:28–34

    Google Scholar 

  13. Yazdanypoor M, Emami F (2015) Enhancement of photorefractive effect in asymmetric metal-insulator-metal plasmonic waveguides. J Nanophotonics 9(1):093074

    Article  Google Scholar 

  14. Moradiani F, Farmani A, Mozaffari MH, Seifouri M, Abedi K (2020) Systematic engineering of a nanostructure plasmonic sensing platform for ultrasensitive biomaterial detection. Optics Communications 474:126178

    Article  CAS  Google Scholar 

  15. Wang M, Tian H, Liu X, Li J, Liu Y (2022) Multiparameter sensing based on tunable Fano resonances in MIM waveguide structure with square-ring and triangular cavities. Photonics 9(5):MDPI, 291–300. https://doi.org/10.3390/photonics9050291

  16. Lassiter JB et al (2013) Plasmonic waveguide modes of film-coupled metallic nanocubes. Nano Lett 13(12):5866–5872

    Article  CAS  PubMed  Google Scholar 

  17. Verhagen E, Dionne JA, Kuipers L, Atwater HA, Polman A (2008) Near-field visualization of strongly confined surface plasmon polaritons in metal−insulator− metal waveguides. Nano Lett 8(9):2925–2929

    Article  CAS  PubMed  Google Scholar 

  18. Harhouz A, Hocini A (2021) Highly sensitive plasmonic temperature sensor based on Fano resonances in MIM waveguide coupled with defective oval resonator. Opt Quant Electron 53(8):1–11

    Article  Google Scholar 

  19. Hill MT et al (2009) Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides. Opt Express 17(13):11107–11112

    Article  CAS  PubMed  Google Scholar 

  20. Zhu J, Li N (2020) MIM waveguide structure consisting of a semicircular resonant cavity coupled with a key-shaped resonant cavity. Opt Express 28(14):19978–19987

    Article  CAS  PubMed  Google Scholar 

  21. Chou Chao C-T, Chou Chau Y-F, Chiang H-P (2022) Breaking the symmetry of a metal–insulator–metal-based resonator for sensing applications. Nanoscale Res Lett 17(1):1–14

    Article  Google Scholar 

  22. Butt M, Khonina S, Kazanskiy N (2019) Plasmonic refractive index sensor based on metal–insulator-metal waveguides with high sensitivity. J Mod Opt 66(9):1038–1043

    Article  CAS  Google Scholar 

  23. Chou Chau Y-F et al (2021) Significantly enhanced coupling effect and gap plasmon resonance in a MIM-cavity based sensing structure. Sci Rep 11(1):1–17

    Article  Google Scholar 

  24. Wu T et al (2015) A nanometeric temperature sensor based on plasmonic waveguide with an ethanol-sealed rectangular cavity. Opt Commun 339:1–6

    Article  Google Scholar 

  25. Rakhshani MR, Mansouri-Birjandi MA (2017) Utilizing the metallic nano-rods in hexagonal configuration to enhance sensitivity of the plasmonic racetrack resonator in sensing application. Plasmonics 12:999–1006

    Article  CAS  Google Scholar 

  26. Rakhshani MR, Mansouri-Birjandi MA (2016) High-sensitivity plasmonic sensor based on metal–insulator–metal waveguide and hexagonal-ring cavity. IEEE Sens J 16(9):3041–3046

    Article  CAS  Google Scholar 

  27. Ebadi SM, Örtegren J, Bayati MS, Ram SB (2020) A multipurpose and highly-compact plasmonic filter based on metal-insulator-metal waveguides. IEEE Photon J 12(3):1–9. https://doi.org/10.1109/JPHOT.2020.2974959

  28. Bahri H, Hocini A, Mouetsi S, Salah HB (2021) Glucose sensing on plasmonic nanostructures using MIM waveguide with notch ring resonator. ECS J Solid State Sci Technol 10(7):071015

    Article  CAS  Google Scholar 

  29. Lai W, Wen K, Lin J, Guo Z, Hu Q, Fang Y (2018) Plasmonic filter and sensor based on a subwavelength end-coupled hexagonal resonator. Appl Opt 57(22):6369–6374

    Article  CAS  PubMed  Google Scholar 

  30. Salah HB, Hocini A, Bahri H, Melouki N (2021) High sensitivity plasmonic sensor based on metal–insulator–metal waveguide coupled with a notched hexagonal ring resonator and a stub. ECS J Solid State Sci Technol 10(8):081001

    Article  CAS  Google Scholar 

  31. Hocini A, Melouki N, Khedrouche D (2021) Design and analysis of near infrared high sensitive metal-insulator-metal plasmonic bio-sensor. in IOP Conference Series: Materials Science and Engineering 1046(1):IOP Publishing, 012003

  32. Mao J, Zhai X, Wang L, Li H (2017) Numerical analysis of near-infrared plasmonic filter with high figure of merit based on Fano resonance. Appl Phys Express 10(8):082201

    Article  Google Scholar 

  33. **e Y, Huang Y, Xu W, Zhao W, He C (2016) A plasmonic temperature-sensing structure based on dual laterally side-coupled hexagonal cavities. Sensors 16(5):706

    Article  PubMed  PubMed Central  Google Scholar 

  34. Amiri IS et al (2019) Graphene oxide effect on improvement of silver surface plasmon resonance D-shaped optical fiber sensor. Opt Commun 44(1):53–60. https://doi.org/10.1515/joc-2019-0094

  35. Wu T, Liu Y, Yu Z, Peng Y, Shu C, Ye H (2014) The sensing characteristics of plasmonic waveguide with a ring resonator. Opt Express 22(7):7669–7677

    Article  CAS  PubMed  Google Scholar 

  36. Wu T, Liu Y, Yu Z, Peng Y, Shu C, He H (2014) The sensing characteristics of plasmonic waveguide with a single defect. Opt Commun 323:44–48

    Article  CAS  Google Scholar 

  37. Zou S, Wang F, Liang R, **ao L, Hu M (2014) A nanoscale refractive index sensor based on asymmetric plasmonic waveguide with a ring resonator: a review. IEEE Sens J 15(2):646–650

    Article  Google Scholar 

  38. Yan S, Yang X, Xu D, Su H, Wu X, Hua E (2020) MIM structure with inverted M-type cavity for sensing applications. IEEE Sens J 21(6):7468–7477

    Article  Google Scholar 

  39. Yu S, Wang S, Zhao T, Yu J (2020) Tunable plasmonic system based on a slotted side-coupled disk resonator and its multiple applications on chip-scale devices. Optik 212:164748

    Article  CAS  Google Scholar 

  40. Chau Y-FC (2020) Mid-infrared sensing properties of a plasmonic metal–insulator–metal waveguide with a single stub including defects. J Phys D Appl Phys 53(11):115401

    Article  CAS  Google Scholar 

  41. Butt M, Khonina S, Kazanskiy N (2022) A compact design of a modified Bragg grating filter based on a metal-insulator-metal waveguide for filtering and temperature sensing applications. Optik 251:168466

    Article  CAS  Google Scholar 

  42. Rakhshani MR, Mansouri-Birjandi MA (2017) High sensitivity plasmonic refractive index sensing and its application for human blood group identification. Sens Actuators, B Chem 249:168–176

    Article  CAS  Google Scholar 

  43. Sharmin S, Adry TZ, Hassan M, Surid E, Sagor RH (2022) Numerical investigation of nanodots implanted high-performance plasmonic refractive index sensor. Plasmonics 17(4):1–13. https://doi.org/10.1007/s11468-022-01659-y

  44. Kumara N, Chau Y-FC, Huang J-W, Huang HJ, Lin C-T, Chiang H-P (2016) Plasmonic spectrum on 1D and 2D periodic arrays of rod-shape metal nanoparticle pairs with different core patterns for biosensor and solar cell applications. J Opt 18(11):115003

    Article  Google Scholar 

  45. Chau Y-FC et al (2019) Strong and tunable plasmonic field coupling and enhancement generating from the protruded metal nanorods and dielectric cores. Results Phys 13:102290

    Article  Google Scholar 

  46. Khani S, Danaie M, Rezaei P (2018) Realization of single-mode plasmonic bandpass filters using improved nanodisk resonators. Opt Commun 420:147–156

    Article  CAS  Google Scholar 

  47. Pannipitiya A, Rukhlenko ID, Premaratne M, Hattori HT, Agrawal GP (2010) Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure. Opt Express 18(6):6191–6204

    Article  CAS  PubMed  Google Scholar 

  48. Rakić AD, Djurišić AB, Elazar JM, Majewski ML (1998) Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Opt 37(22):5271–5283

    Article  PubMed  Google Scholar 

  49. Khani S, Danaie M, Rezaei P (2022) Plasmonic all-optical modulator based on the coupling of a surface plasmon stub-filter and a meandered MIM waveguide. Opt Quant Electron 54(12):1–21

    Article  Google Scholar 

  50. **e Y-Y, Huang Y-X, Zhao W-L, Xu W-H, He C (2015) A novel plasmonic sensor based on metal–insulator–metal waveguide with side-coupled hexagonal cavity. IEEE Photonics J 7(2):1–12

    Article  Google Scholar 

  51. Zhang Z, Wang H, Zhao Y, Lu D, Zhang Z (2013) Transmission properties of the one-end-sealed metal–insulator–metal waveguide. Optik 124(2):177–179

    Article  CAS  Google Scholar 

  52. Bogaerts W et al (2012) Silicon microring resonators. Laser Photonics Rev 6(1):47–73

    Article  CAS  Google Scholar 

  53. Danaie M, Shahzadi A (2019) Design of a high-resolution metal–insulator–metal plasmonic refractive index sensor based on a ring-shaped Si resonator. Plasmonics 14(6):1453–1465

    Article  CAS  Google Scholar 

  54. **e Y et al (2015) Theoretical investigation of a plasmonic sensor based on a metal–insulator–metal waveguide with a side-coupled nanodisk resonator. J Nanophotonics 9(1):093099

    Article  CAS  Google Scholar 

  55. Hassan G, El-Kashef H, El-Baradie B, El-Labban M (1995) Interferometric measurement of the physical constants of laser dye solvents. Rev Sci Instrum 66(1):38–42

    Article  CAS  Google Scholar 

  56. El-Kashef H (1994) Optical and electrical properties of materials. Rev Sci Instrum 65(6):2056–2061

    Article  CAS  Google Scholar 

  57. Weng S, Pei L, Wang J, Ning T, Li J (2017) High sensitivity D-shaped hole fiber temperature sensor based on surface plasmon resonance with liquid filling. Photonics Res 5(2):103–107

    Article  CAS  Google Scholar 

  58. Zhu J, Lou J (2020) High-sensitivity Fano resonance temperature sensor in MIM waveguides coupled with a polydimethylsiloxane-sealed semi-square ring resonator. Results Phys 18:103183

    Article  Google Scholar 

  59. Kazanskiy NL, Khonina SN, Butt MA, Kaźmierczak A, Piramidowicz R (2021) A numerical investigation of a plasmonic sensor based on a metal-insulator-metal waveguide for simultaneous detection of biological analytes and ambient temperature. Nanomaterials 11(10):2551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hocini A, Ben Salah H, Temmar MNE (2021) Ultra-high-sensitive sensor based on a metal–insulator–metal waveguide coupled with cross cavity. J Comput Electron 3:1354–1362

    Article  Google Scholar 

  61. Diniz LO, Nunes FD, Marega E, Weiner J, Borges B-HV (2010) Metal–insulator–metal surface plasmon polariton waveguide filters with cascaded transverse cavities. J Lightwave Technol 29(5):714–720

    Article  Google Scholar 

  62. Khani S, Hayati M (2022) Optical biosensors using plasmonic and photonic crystal band-gap structures for the detection of basal cell cancer. Sci Rep 12(1):5246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chou Chao C-T et al (2021) Ultrahigh sensitivity of a plasmonic pressure sensor with a compact size. Nanomaterials 11(11):3147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bensalah H, Hocini A, Bahri H (2022) Design and analysis of a mid-infrared ultra-high sensitive sensor based on metal-insulator-metal structure and its application for temperature and detection of glucose. Prog Electromagn Res M 112:81–91. https://doi.org/10.2528/PIERM22032604

  65. Bensalah H, Hocini A, Bahri H, Khedrouche D, Ingebrandt S, Pachauri V (2022) A plasmonic refractive index sensor with high sensitivity and its application for temperature and detection of biomolecules. J Opt 1–12. https://doi.org/10.1007/s12596-022-00922-z

  66. Wei Z et al (2016) Multifunctional sensors and switch in MDM waveguide with symmetric dual side-coupled nanodisks. IEEE Photonics Technol Lett 28(24):2893–2896

    Article  CAS  Google Scholar 

  67. Chen F, Zhang H, Sun L, Li J, Yu C (2019) Temperature tunable Fano resonance based on ring resonator side coupled with a MIM waveguide. Opt Laser Technol 116:293–299

    Article  CAS  Google Scholar 

Download references

Funding

The authors received financial support from the research council of the Iran University of Science and Technology.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, design, simulation, and writing of the original paper are performed by Muhammad Ghanavati and Mohammad Azim Karami.

Corresponding author

Correspondence to Mohammad Azim Karami.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghanavati, M., Karami, M.A. Ellipsoid Defect in Trapezoidal-Shaped Cavities Coupled to Multi-resonance Plasmonic Metal–Insulator-Metal Waveguide Toward Ultrasensitive Temperature Sensor. Plasmonics 18, 1047–1057 (2023). https://doi.org/10.1007/s11468-023-01831-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-01831-y

Keywords

Navigation