Log in

Multi-channel Optical Fiber Surface Plasmon Resonance Sensor with Narrow FWHM, High Figure of Merit, and Wide Detection Range

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We propose a multi-channel optical fiber surface plasmon resonance (SPR) sensor with narrow full width at half maximum (FWHM), high figure of merit (FOM), and wide detection range based on side-polished fiber. The sensing surface is modified by a dielectric layer on the top of gold film. By controlling the thickness of the dielectric layer, the resonance wavelength can be adjusted in a large range. Compared to traditional SPR sensors, the SPR dip FWHM of the proposed sensor has been significantly reduced to several nanometers (minimum FWHM reaches 5.2 nm), which results in a significant improvement on the FOM of the SPR sensor (maximum FOM reaches 218 RIU−1), and is great helpful to improve wavelength measurement accuracy. The multi-channel SPR sensor can be easily achieved through above features by cascading multiple sub-channels with different dielectric layer thicknesses, and the SPR spectra can be demodulated by wavelength division multiplexing method. Compared to traditional multi-channel SPR sensors which have usually two sensing channels, in this work, the narrow FWHM makes it easy to produce more SPR dips in the spectrum. In this paper, we demonstrate a three-channel SPR sensor and a four-channel SPR sensor, whose performances exceed most of current multi-channel optical fiber SPR sensors. In addition, the proposed multi-channel SPR sensor has wide refractive index detection range of 1.33–1.43 RIU, which is applicable for detecting most liquid samples. Moreover, the proposed multi-channel SPR sensor is based on single-mode fiber, and the sensor structure is easy to fabricate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Singh GP, Sardana N (2022) Smartphone-based surface plasmon resonance sensors: a review. Plasmonics. https://doi.org/10.1007/s11468-022-01672-1

    Article  PubMed  PubMed Central  Google Scholar 

  2. Xu Y, Bai P, Zhou XD, Akimov Y, Png CE, Ang LK, Knoll W, Wu L (2019) Optical refractive index sensors with plasmonic and photonic structures: promising and inconvenient truth. Adv Opt Mater 7:1801433. https://doi.org/10.1002/adom.201801433

    Article  CAS  Google Scholar 

  3. Sharma AK, Jha R, Gupta BD (2007) Fiber-optic sensors based on surface plasmon resonance: a comprehensive review. IEEE Sens J 7:1118–1129. https://doi.org/10.1109/jsen.2007.897946

    Article  Google Scholar 

  4. Otto A (1968) Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z Physik 216:398–410. https://doi.org/10.1007/bf01391532

    Article  CAS  Google Scholar 

  5. Kretschmann E, Raether H (1968) Radiative decay of non-radiative surface plasmons excited by light. Z Naturforsch A 23:2135–2136. https://doi.org/10.1515/zna-1968-1247

    Article  CAS  Google Scholar 

  6. Liu Y, Peng W (2021) Fiber-optic surface plasmon resonance sensors and biochemical applications: a review. J Lightwave Technol 39:3781–3791. https://doi.org/10.1109/Jlt.2020.3045068

    Article  CAS  Google Scholar 

  7. Zhao Y, Tong RJ, **a F, Peng Y (2019) Current status of optical fiber biosensor based on surface plasmon resonance. Biosens Bioelectron. https://doi.org/10.1016/j.bios.2019.111505

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jorgenson RC, Yee SS (1993) A fiber-optic chemical sensor based on surface plasmon resonance. Sens Actuator B-Chem 12:213–220. https://doi.org/10.1016/0925-4005(93)80021-3

    Article  CAS  Google Scholar 

  9. Esteban O, Naranjo FB, Diaz-Herrera N, Valdueza-Felip S, Navarrete MC, Gonzalez-Cano A (2011) High-sensitive SPR sensing with indium nitride as a dielectric overlay of optical fibers. Sens Actuator B-Chem 158:372–376. https://doi.org/10.1016/j.snb.2011.06.038

    Article  CAS  Google Scholar 

  10. Chen N, Chang M, Zhang XD, Zhou J, Lu XL, Zhuang SL (2019) Highly sensitive plasmonic sensor based on a dual-side polished photonic crystal fiber for component content sensing applications. Nanomaterials 9:1587. https://doi.org/10.3390/nano9111587

    Article  CAS  PubMed Central  Google Scholar 

  11. Rifat AA, Mandiraji GA, Sua YM, Ahmed R, Shee YG, Adikan FRM (2016) Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor. Opt Express 24:2485–2495. https://doi.org/10.1364/oe.24.002485

    Article  CAS  PubMed  Google Scholar 

  12. Liu ZH, Liu W, Lai B, Zhang Y, Zhang YX, Yang XH, Zhang JZ, Yuan LB (2021) SPR sensor based on Bessel-like beam. Opt Express 29:18305–18314. https://doi.org/10.1364/oe.423760

    Article  PubMed  Google Scholar 

  13. Wei Y, Su YD, Liu CL, Zhang YH, Nie XF, Liu ZH, Zhang Y, Peng F (2017) Segmented detection SPR sensor based on seven-core fiber. Opt Express 25:21841–21850. https://doi.org/10.1364/oe.25.021841

    Article  CAS  PubMed  Google Scholar 

  14. Cennamo N, Zuppella P, Bacco D, Corso AJ, Pelizzo MG, Zeni L (2016) SPR sensor platform based on a novel metal bilayer applied on D-shaped plastic optical fibers for refractive index measurements in the range 1.38-1.42. IEEE Sens J 16:4822–4827. https://doi.org/10.1109/jsen.2016.2549271

    Article  CAS  Google Scholar 

  15. Liu BH, Jiang YX, Zhu XS, Tang XL, Shi YW (2013) Hollow fiber surface plasmon resonance sensor for the detection of liquid with high refractive index. Opt Express 21:32349–32357. https://doi.org/10.1364/oe.21.032349

    Article  PubMed  Google Scholar 

  16. Rifat AA, Ahmed R, Mahdiraji GA, Adikan FRM (2017) Highly sensitive D-shaped photonic crystal fiber-based plasmonic biosensor in visible to near-IR. IEEE Sens J 17:2776–2783. https://doi.org/10.1109/jsen.2017.2677473

    Article  CAS  Google Scholar 

  17. Zhang W, Lian ZG, Benson T, Wang X, Lou SQ (2018) A refractive index sensor based on a D-shaped photonic crystal fiber with a nanoscale gold belt. Opt Quantum Electron 50:29. https://doi.org/10.1007/s11082-017-1276-0

    Article  CAS  Google Scholar 

  18. Zhang Z, Li SG, Liu Q, Feng XX, Zhang SH, Wang YJ, Wu JJ (2018) Groove micro-structure optical fiber refractive index sensor with nanoscale gold film based on surface plasmon resonance. Opt Fiber Technol 43:45–48. https://doi.org/10.1016/j.yofte.2018.04.009

    Article  CAS  Google Scholar 

  19. Velazquez-Gonzalez JS, Monzon-Hernandez D, Moreno-Hernandez D, Martinez-Pinon F, Hernandez-Romano I (2017) Simultaneous measurement of refractive index and temperature using a SPR-based fiber optic sensor. Sens Actuator B-Chem 242:912–920. https://doi.org/10.1016/j.snb.2016.09.164

    Article  CAS  Google Scholar 

  20. Liu ZH, Wei Y, Zhang Y, Liu CL, Zhang YX, Zhao EM, Yang J, Liu CY, Yuan LB (2015) Distributed fiber surface plasmon resonance sensor based on the incident angle adjusting method. Opt Lett 40:4452–4455. https://doi.org/10.1364/ol.40.004452

    Article  CAS  PubMed  Google Scholar 

  21. Yuan YQ, Wang LN, Huang J (2012) Theoretical investigation for two cascaded SPR fiber optic sensors. Sens Actuator B-Chem 161:269–273. https://doi.org/10.1016/j.snb.2011.10.029

    Article  CAS  Google Scholar 

  22. Wei Y, Liu CL, Zhang YH, Luo YX, Nie XF, Liu ZH, Zhang Y, Peng F, Zhou ZM (2017) Multi-channel SPR sensor based on the cascade application of the single-mode and multimode optical fiber. Opt Commun 390:82–87. https://doi.org/10.1016/j.optcom.2016.12.069

    Article  CAS  Google Scholar 

  23. Liu L, Liu ZH, Zhang Y, Liu ST (2019) V-shaped micro-structure optical fiber surface plasmon resonance sensor for the simultaneous measurement of the refractive index and temperature. Opt Lett 44:5093–5096. https://doi.org/10.1364/ol.44.005093

    Article  CAS  PubMed  Google Scholar 

  24. Tabassum R, Kant R (2020) Cascaded wavelength multiplexed refractive index sensors in optical fibers based on surface plasmon resonances. J Appl Phys 128:073101. https://doi.org/10.1063/5.0017256

    Article  CAS  Google Scholar 

  25. Sarkar S, Gupta V, Kumar M, Schubert J, Probst PT, Joseph J, Konig TAF (2019) Hybridized guided-mode resonances via colloidal plasmonic self-assembled grating. ACS Appl Mater Interfaces 11:13752–13760. https://doi.org/10.1021/acsami.8b20535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Luke K, Okawachi Y, Lamont MRE, Gaeta AL, Lipson M (2015) Broadband mid-infrared frequency comb generation in a Si3N4 microresonator. Opt Lett 40:4823–4826. https://doi.org/10.1364/ol.40.004823

    Article  CAS  PubMed  Google Scholar 

  27. Boidin R, Halenkovic T, Nazabal V, Benes L, Nemec P (2016) Pulsed laser deposited alumina thin films. Ceram Int 42:1177–1182. https://doi.org/10.1016/j.ceramint.2015.09.048

    Article  CAS  Google Scholar 

  28. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379. https://doi.org/10.1103/physrevb.6.4370

    Article  CAS  Google Scholar 

  29. Wang Q, **g JY, Wang XZ, Niu LY, Zhao WM (2020) A D-shaped fiber long-range surface plasmon resonance sensor with high Q-factor and temperature self-compensation. IEEE Trans Instrum Meas 69:2218–2224. https://doi.org/10.1109/tim.2019.2920187

    Article  CAS  Google Scholar 

  30. Zhang Y, Liang PB, Wang YS, Zhang YX, Liu ZH, Wei Y, Zhu ZD, Zhao EM, Yang J, Yuan LB (2017) Cascaded distributed multichannel fiber SPR sensor based on gold film thickness adjustment approach. Sensor Actuat A-Phys 267:526–531. https://doi.org/10.1016/j.sna.2017.09.038

    Article  CAS  Google Scholar 

  31. Wang ST, Ma WB, Cheng Q, Liu N, Lu YH, Wu XR, **ang JL (2022) Dual-channel surface plasmon resonance-based photonic crystal fiber sensor with metal-Ta2O5 coating at near-infrared wavelength. Plasmonics 17:119–129. https://doi.org/10.1007/s11468-021-01503-9

    Article  CAS  Google Scholar 

  32. Yasli A, Ademgil H, Haxha S, Aggoun A (2020) Multi-channel photonic crystal fiber based surface plasmon resonance sensor for multi-analyte sensing. IEEE Photonics J 12:6800515. https://doi.org/10.1109/Jphot.2019.2961110

    Article  CAS  Google Scholar 

  33. Bing PB, Sui JL, Wu GF, Guo XY, Li ZY, Tan L, Yao JQ (2020) Analysis of dual-channel simultaneous detection of photonic crystal fiber sensors. Plasmonics 15:1071–1076. https://doi.org/10.1007/s11468-020-01131-9

    Article  CAS  Google Scholar 

  34. Kaur V, Singh S (2019) A dual-channel surface plasmon resonance biosensor based on a photonic crystal fiber for multianalyte sensing. J Comput Electron 18:319–328. https://doi.org/10.1007/s10825-019-01305-7

    Article  CAS  Google Scholar 

  35. Hameed MFO, Alrayk YKA, Shaalan AA, El Deeb WS, Obayya SSA (2016) Design of highly sensitive multichannel bimetallic photonic crystal fiber biosensor. J Nanophotonics 10:046016. https://doi.org/10.1117/1.Jnp.10.046016

    Article  Google Scholar 

  36. Haider F, Aoni RA, Ahmed R, Mahdiraji GA, Azman MF, Adikan FRM (2020) Mode-multiplex plasmonic sensor for multi-analyte detection. Opt Lett 45:3941–3944. https://doi.org/10.1364/ol.396340

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant numbers 11874132 and 61975039). Authors S. Liu and Y. Zhang have received research support.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Lu Liu. The first draft of the manuscript was written by Lu Liu and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shutian Liu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Liu, Z., Zhang, Y. et al. Multi-channel Optical Fiber Surface Plasmon Resonance Sensor with Narrow FWHM, High Figure of Merit, and Wide Detection Range. Plasmonics 17, 2235–2244 (2022). https://doi.org/10.1007/s11468-022-01713-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-022-01713-9

Keywords

Navigation