Log in

Fano Resonance in the Plasmonic Structure of MIM Waveguide with r-Shaped Resonator for Refractive Index Sensor

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A plasmonic structure of metal–insulator-metal (MIM) waveguide consisting of a baffle waveguide and an r-shaped resonator is designed to produce Fano resonances. The finite element method is used to analyze the transmission characteristics and magnetic field distributions of the plasmonic structure. The simulation results show that two Fano resonances can be achieved by the interference between a continuum state in the baffle waveguide and a discrete state in the r-shaped resonator. The Fano resonances can be tuned by changing the geometrical parameters of the plasmonic structure. The refractive index sensing is investigated and it is found that the sensitivity is strongly dependent on the geometrical parameters. The maximum sensitivity is 1333 nm/RIU, with the figure of merit of 5876. The results of the designed plasmonic structure offer high sensitivity and nano-scale integration, which are beneficial to nano-scale refractive index sensors, biosensors, and photonic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

Code Availability

Not applicable.

References

  1. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424(6950):824–830. https://doi.org/10.1038/nature01937

    Article  CAS  PubMed  Google Scholar 

  2. Bochenkov VE, Frederiksen M, Sutherland DS (2013) Enhanced refractive index sensitivity of elevated short-range ordered nanohole arrays in optically thin plasmonic Au films. Opt Express 21(12):14763–14770. https://doi.org/10.1364/OE.21.014763

    Article  CAS  PubMed  Google Scholar 

  3. Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9(3):193–204. https://doi.org/10.1038/nmat2630

    Article  CAS  PubMed  Google Scholar 

  4. Yang S, Yu D, Liu G, Lin Q, Zhai X, Wang L (2018) Perfect plasmon-induced absorption and its application for multi-switching in simple plasmonic system. Plasmonics 13(3):1015–1020. https://doi.org/10.1007/s11468-017-0599-9

    Article  CAS  Google Scholar 

  5. Shahamat Y, Vahedi M (2019) Mid-infrared plasmonically induced absorption and transparency in a Si-based structure for temperature sensing and switching applications. Opt Commun 430:227–233. https://doi.org/10.1016/j.optcom.2018.08.047

    Article  CAS  Google Scholar 

  6. Chen J, Sun C, Gong Q (2014) Fano resonances in a single defect nanocavity coupled with a plasmonic waveguide. Opt Lett 39(1):52–55. https://doi.org/10.1364/OL.39.000052

    Article  PubMed  Google Scholar 

  7. Chen Z, Cui L, Song X, Yu L, **ao J (2015) High sensitivity plasmonic sensing based on Fano interference in a rectangular ring waveguide. Opt Commun 340:1–4. https://doi.org/10.1016/j.optcom.2014.11.081

    Article  CAS  Google Scholar 

  8. Pang S, Huo Y, **e Y, Hao L (2017) Tunable electromagnetically induced transparency-like in plasmonic stub waveguide with cross resonator. Plasmonics 12(4):1161–1168. https://doi.org/10.1007/s11468-016-0371-6

    Article  CAS  Google Scholar 

  9. **ao G, Xu Y, Yang H, Ou Z, Chen J, Li H, Liu X, Zeng L, Li J (2021) High sensitivity plasmonic sensor based on Fano resonance with inverted U-shaped resonator. Sensors 21(4):1164. https://doi.org/10.3390/s21041164

  10. Li J, Chen J, Liu X, Tian H, Wang J, Cui J, Rohimah S (2021) Optical sensing based on multimode Fano resonances in metal-insulator-metal waveguide systems with X-shaped resonant cavities. Appl Opt 60(18):5312–5319. https://doi.org/10.1364/AO.427862

    Article  PubMed  Google Scholar 

  11. Chen Z, Segev M (2021) Highlighting photonics: looking into the next decade. eLight 1:2. https://doi.org/10.1186/s43593-021-00002-y

  12. Rohimah S, Tian H, Wang J, Chen J, Li J, Liu X, Cui J, Hao Y (2022) Tunable multiple Fano resonances based on a plasmonic metal-insulator-metal structure for nano-sensing and plasma blood sensing applications. Appl Opt 61(6):1275–1283. https://doi.org/10.1364/AO.450084

    Article  PubMed  Google Scholar 

  13. Rahimzadegan A, Granpayeh N, Hosseini SP (2014) Improved plasmonic filter, ultra-compact demultiplexer, and splitter. J Opt Soc Korea 18(3):261–273. https://doi.org/10.3807/JOSK.2014.18.3.261

    Article  Google Scholar 

  14. Khani S, Danaie M, Rezaei P (2019) Design of a single-mode plasmonic bandpass filter using a hexagonal resonator coupled to graded-stub waveguides. Plasmonics 14(1):53–62. https://doi.org/10.1007/s11468-018-0777-4

    Article  CAS  Google Scholar 

  15. Jankovic N, Cselyuszka N (2019) High-resolution plasmonic filter and refractive index sensor based on perturbed square cavity with slits and orthogonal feeding scheme. Plasmonics 14(3):555–560. https://doi.org/10.1007/s11468-018-0834-z

    Article  CAS  Google Scholar 

  16. Veronis G, Fan S (2007) Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides. Opt Express 15(3):1211–1221. https://doi.org/10.1364/OE.15.001211

    Article  PubMed  Google Scholar 

  17. Bian Y, Zheng Z, Liu Y, Liu J, Zhu J, Zhou T (2011) Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra-deep-subwavelength mode confinement. Opt Express 19(23):22417–22422. https://doi.org/10.1364/OE.19.022417

    Article  CAS  PubMed  Google Scholar 

  18. Jeong C, Kim M, Kim S (2013) Circular hybrid plasmonic waveguide with ultra-long propagation distance. Opt Express 21(14):17404–17412. https://doi.org/10.1364/OE.21.017404

    Article  CAS  PubMed  Google Scholar 

  19. Ren X, Ren K, Cai Y (2017) Tunable compact nanosensor based on Fano resonance in a plasmonic waveguide system. Appl Opt 56(31):H1–H9. https://doi.org/10.1364/AO.56.0000H1

    Article  PubMed  Google Scholar 

  20. Wang M, Zhang M, Wang Y, Zhao R, Yan S (2019) Fano resonance in an asymmetric MIM waveguide structure and its application in a refractive index nanosensor. Sensors 19(4):791. https://doi.org/10.3390/s19040791

    Article  CAS  PubMed Central  Google Scholar 

  21. Luk’yanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong CT, (2010) The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9(9):707–715. https://doi.org/10.1038/NMAT2810

    Article  Google Scholar 

  22. Miroshnichenko AE, Flach S, Kivshar YS (2010) Fano resonances in nanoscale structures. Rev Mod Phys 82(3):2257–2298. https://doi.org/10.1103/RevModPhys.82.2257

    Article  CAS  Google Scholar 

  23. Butet J, Martin OJF (2014) Fano resonances in the nonlinear optical response of coupled plasmonic nanostructures. Opt Express 22(24):29693–29707. https://doi.org/10.1364/OE.22.029693

    Article  PubMed  Google Scholar 

  24. Chen J, Li Z, Zhang X, **ao J, Gong Q (2013) Submicron bidirectional all-optical plasmonic switches. Sci Rep 3:1451. https://doi.org/10.1038/srep01451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen J, Li J, Liu X, Rohimah S, Tian H, Qi D (2021) Fano resonance in a MIM waveguide with double symmetric rectangular stubs and its sensing characteristics. Opt Commun 482:126563. https://doi.org/10.1016/j.optcom.2020.126563

    Article  CAS  Google Scholar 

  26. Liu X, Li J, Chen J, Rohimah S, Tian H, Wang J (2021) Independently tunable triple Fano resonances based on MIM waveguide structure with a semi-ring cavity and its sensing characteristics. Opt Express 29(13):20829–20838. https://doi.org/10.1364/OE.428355

    Article  CAS  PubMed  Google Scholar 

  27. Gai H, Wang J, Tian Q (2007) Modified Debye model parameters of metals applicable for broadband calculations. Appl Opt 46(12):2229–2233. https://doi.org/10.1364/AO.46.002229

    Article  CAS  PubMed  Google Scholar 

  28. Lu H, Liu X, Mao D, Gong Y, Wang G (2011) Induced transparency in nanoscale plasmonic resonator systems. Opt Lett 36(16):3233–3235. https://doi.org/10.1364/OL.36.003233

    Article  PubMed  Google Scholar 

  29. Niu X, Hu X, Chu S, Gong Q (2018) Epsilon-near-zero photonics: a new platform for integrated devices. Adv Opt Mater 6(10):1701292. https://doi.org/10.1002/adom.201701292

    Article  CAS  Google Scholar 

  30. Lee D, So S, Hu G, Kim M, Badloe T, Cho H, Kim J, Kim H, Qiu C, Rho J (2022) Hyperbolic metamaterials: fusing artificial structures to natural 2D materials. eLight 2:1. https://doi.org/10.1186/s43593-021-00008-6

  31. Zhang Q, Huang X, Lin X, Tao J, ** X (2009) A subwavelength coupler-type MIM optical filter. Opt Express 17(9):7549–7554. https://doi.org/10.1364/OE.17.007549

    Article  CAS  Google Scholar 

  32. Li Z, Wen K, Chen L, Lei L, Zhou J, Zhou D, Fang Y, Wu B (2019) Refractive index sensor based on multiple Fano resonances in a plasmonic MIM structure. Appl Opt 58(18):4878–4883. https://doi.org/10.1364/AO.58.004878

    Article  CAS  PubMed  Google Scholar 

  33. Hu F, Yi H, Zhou Z (2011) Band-pass plasmonic slot filter with band selection and spectrally splitting capabilities. Opt Express 19(6):4848–4855. https://doi.org/10.1364/OE.19.004848

    Article  PubMed  Google Scholar 

  34. Fang Y, Wen K, Qin Y, Li Z, Wu B (2019) Multiple Fano resonances in an end-coupled MIM waveguide system. Opt Commun 452:12–17. https://doi.org/10.1016/j.optcom.2019.06.076

    Article  CAS  Google Scholar 

  35. Liu X, Li J, Chen J, Rohimah S, Tian H, Wang J (2020) Fano resonance based on D-shaped waveguide structure and its application for human hemoglobin detection. Appl Opt 59(21):6424–6430. https://doi.org/10.1364/AO.397976

    Article  CAS  PubMed  Google Scholar 

  36. Yun B, Hu G, Zhang R, Cui Y (2016) Fano resonances in a plasmonic waveguide system composed of stub coupled with a square cavity resonator. J Opt 18(5):055002. https://doi.org/10.1088/2040-8978/18/5/055002

  37. Tang Y, Zhang Z, Wang R, Hai Z, Xue C, Zhang W, Yan S (2017) Refractive index sensor based on Fano resonances in metal-insulator-metal waveguides coupled with resonators. Sensors 17(4):784. https://doi.org/10.3390/s17040784

    Article  CAS  PubMed Central  Google Scholar 

  38. Guo Z, Wen K, Hu Q, Lai W, Lin J, Fang Y (2018) Plasmonic multichannel refractive index sensor based on subwavelength tangent-ring metal–insulator–metal waveguide. Sensors 18(5):1348. https://doi.org/10.3390/s18051348

    Article  CAS  PubMed Central  Google Scholar 

  39. Yang Q, Liu X, Guo F, Bai H, Zhang B, Li X, Tan Y, Zhang Z (2020) Multiple Fano resonance in MIM waveguide system with cross-shaped cavity. Optik 220:165163. https://doi.org/10.1016/j.ijleo.2020.165163

    Article  CAS  Google Scholar 

  40. Wang M, Tian H, Liu X, Li J, Liu Y (2022) Multiparameter sensing based on tunable Fano resonances in MIM waveguide structure with square-ring and triangular cavities. Photonics 9(5):291. https://doi.org/10.3390/photonics9050291

    Article  Google Scholar 

  41. Yeh Y (2008) Real-time measurement of glucose concentration and average refractive index using a laser interferometer. Opt Lasers Eng 46(9):666–670. https://doi.org/10.1016/j.optlaseng.2008.04.008

    Article  Google Scholar 

Download references

Funding

This work was supported in part by the Fundamental Research Funds for the Central Universities (No. 2572019BC04) and in part by the Heilongjiang Provincial Natural Science Foundation of China (No. LH2019F041).

Author information

Authors and Affiliations

Authors

Contributions

Siti Rohimah has contributed to conceptualization, design, analysis, writing, review, and editing. He Tian has contributed to supervision, funding acquisition, review, and editing manuscript. **fang Wang, Jianfeng Chen, **a Li, **ng Liu, **gang Cui, Qiang Xu, and Yu Hao contributed to validating and editing the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to He Tian.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participle

Not applicable.

Consent for Publication

The manuscript has not been published before and is not being considered for publication elsewhere. All authors have contributed to the manuscript creation and read and approved the final manuscript.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rohimah, S., Tian, H., Wang, J. et al. Fano Resonance in the Plasmonic Structure of MIM Waveguide with r-Shaped Resonator for Refractive Index Sensor. Plasmonics 17, 1681–1689 (2022). https://doi.org/10.1007/s11468-022-01655-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-022-01655-2

Keywords

Navigation