Log in

Proposing a Numerical Method to Calculate the Absorbed Power of Plasmonic Nanoparticles (Au, Ag, Al, and Cu) with Different Morphologies Under Solar Irradiance

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

To obtain the heat power or the power absorbed by nanoparticles under sunlight, we presented a numerical method that by obtaining the absorption cross section of nanoparticles which is exposed to plane-wave incident light and then multiplying it in the solar spectrum, the absorption spectrum of nanoparticles under solar radiation is obtained and by integrating the absorption spectrum, the total power absorbed by the nanoparticles under the sunlight is obtained. We applied the above method to obtain the heat power of gold, silver, aluminum, and copper nanoparticles with the same volume of metal and in three different spherical, cubic, and rod morphologies. The results showed that for gold nanoparticles, the cubic structure produces the highest heat power and about 1.7 times the spherical structure; for silver nanoparticles, the rod structure with aspect ratio 2.6:1 produces the highest heat power and about 1.8 times the spherical structure; for aluminum nanoparticles, the rod structure with aspect ratio 2.6:1 produces the highest heat power and about 2.2 times the spherical structure; and for copper nanoparticles, the cubic structure produces the highest heat power and about 1.3 times the spherical structure. Also, we have investigated the effect of nanoparticle aggregation on absorbed power under sunlight. The results of this research can be used for solar thermal applications with the help of plasmonic nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

Software application or custom code generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Neumann O, Urban AS, Day J, Lal S, Nordlander P, Halas NJ (2013) Solar vapor generation enabled by nanoparticles. ACSNANOA 7(1):42–49. https://doi.org/10.1021/nn304948h

    Article  CAS  Google Scholar 

  2. Zhou L, Tan Y, Ji D, Zhu B, Zhang P, Xu J, Gan Q, Yu Z, Zhu J (2016) Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci Adv 2(4 e1501227):1–8. https://doi.org/10.1126/sciadv.1501227

    Article  CAS  Google Scholar 

  3. Zazoum B, El Hassan M, Jendoubi A (2020) Solar optical fiber daylighting system with an IR filter: experimental and modeling studies. Energy Rep 6(Supplement 9):903–908. https://doi.org/10.1016/j.egyr.2020.11.111

    Article  Google Scholar 

  4. Li L, Wang J, Yang Z, Lou G (2018) An optical fiber daylighting system with large Fresnel lens. Energy Procedia 152:342–347. https://doi.org/10.1016/j.egypro.2018.09.146

    Article  Google Scholar 

  5. Huang X, El-Sayed MA (2010) Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. Adv Res 1:13–28. https://doi.org/10.1016/j.jare.2010.02.002

    Article  Google Scholar 

  6. Vines JB, Yoon JH, Ryu NE, Lim DJ, Park H (2019) Gold nanoparticles for photothermal cancer therapy. Front Chem 7(167):1–16. https://doi.org/10.3389/fchem.2019.00167

    Article  CAS  Google Scholar 

  7. Grosges T, Barchiesi D (2018) Gold nanoparticles as a photothermal agent in cancer therapy: the thermal ablation characteristic length. Molecules 23(1316):1–13. https://doi.org/10.3390/molecules23061316

    Article  CAS  Google Scholar 

  8. Gharatape A, Davaran S, Salehi R, Hamishehkar H (2016) Engineered gold nanoparticles for photothermal cancer therapy and bacteria killing. RSC Adv 6:111482–111516. https://doi.org/10.1039/c6ra18760a

    Article  CAS  Google Scholar 

  9. Jong WHD, Borm PJ (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomed 3(2):133–149

    Article  Google Scholar 

  10. Yu X, Trase I, Ren M, Duval K, Guo X, Chen Z (2016) Design of nanoparticle-based carriers for targeted drug delivery. J Nanomater 1087250:1–15. https://doi.org/10.1155/2016/1087250

    Article  CAS  Google Scholar 

  11. Cheng H, Wang Ch, Xu Zh, Lin H, Zhang Ch (2015) Gold nanoparticle-enhanced near infrared fluorescent nanocomposites for targeted bio-imaging. RSC Adv 5:20–26. https://doi.org/10.1039/c4ra12066c

    Article  CAS  Google Scholar 

  12. Selvan ST, Tan TTY, Yi DK, Jan NR (2010) Functional and multifunctional nanoparticles for bioimaging and biosensing. Langmuir 26(14):11631–11641. https://doi.org/10.1021/la903512m

    Article  CAS  PubMed  Google Scholar 

  13. Walsh T, Lee J, Park K (2015) Aser-assisted photothermal heating of a plasmonic nanoparticle-suspended droplet in a microchannel. Analyst 140:1535–1542. https://doi.org/10.1039/c4an01750a

    Article  CAS  PubMed  Google Scholar 

  14. Cheong K, Yi DK, Lee JG, Park JM, Kim MJ, Edel JB, Ko Ch (2008) Gold nanoparticles for one step DNA extraction and real time PCR of pathogens in a single chamber. Lab Chip 8:810–813. https://doi.org/10.1039/b717382b

    Article  CAS  PubMed  Google Scholar 

  15. Kim J, Kim H, Park JH, Jon S (2017) Gold Nanorod-based Photo-PCR System for One-Step, rapid detection of bacteria. Nanotheranostics 1:178–185. https://doi.org/10.7150/ntno.18720

    Article  PubMed  PubMed Central  Google Scholar 

  16. Roche PhJR, Najih M, Lee SS, Beitel LK, Paliouras MCM, Kirk AG, Trifiro MA (2017) Real time plasmonic qPCR: how fast is ultra-fast? 30 cycles in 54 seconds. Analyst 142:1746–1755. https://doi.org/10.1039/c7an00304h

    Article  CAS  PubMed  Google Scholar 

  17. Ishii S, Sugavaneshwar RP, Chen K, Dao TD, Nagao T (2016) Solar water heating and vaporization with silicon nanoparticles at mie resonances. Opt Mater Express 6(2):640–648. https://doi.org/10.1364/ome.6.000640

    Article  CAS  Google Scholar 

  18. Taylor RA, Phelan PE, Otanicar TP, Walker CA, Nguyen M, Trimble S, Prasher R (2011) Applicability of nanofluids in high flux solar collectors. Renew Sustain Energy 3(023104):1–8. https://doi.org/10.1063/1.3571565

    Article  CAS  Google Scholar 

  19. Neumanna O, Feronti C, Neumann AD, Dong A, Schell K, Lue B, Kim E, Quinn M, Thompsone Sh, Grady N, Nordlander P, Oden M, Halas NJ (2013) Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles. PNAS 110(29):11677–11681. https://doi.org/10.1073/pnas.1310131110

    Article  Google Scholar 

  20. Chen CJ, Chen DH (2013) Preparation and near-infrared photothermal conversion property of cesium tungsten oxide nanoparticles. Nanoscale Res Lett 8(57):1–8. https://doi.org/10.1186/1556-276x-8-57

    Article  CAS  Google Scholar 

  21. Mercatelli L, Sani E, Zaccanti G, Martelli F, Ninni PD, Barison SA, Pagura C, Agresti F, Jafrancesco D (2011) Absorption and scattering properties of carbon nanohorn-based nanofluids for direct sunlight absorbers. Nanoscale Res Lett 6(282):1–9. https://doi.org/10.1186/1556-276x-6-282

    Article  Google Scholar 

  22. Baffou G, Quidant R, García de Abajo FJ (2010) Nanoscale control of optical heating in complex plasmonic systems. ACSNANO 4(2):709–716. https://doi.org/10.1021/nn901144d

    Article  CAS  Google Scholar 

  23. Sassaroli E, Li KCP, Neill BEO (2009) Numerical investigation of heating of a gold nanoparticle and the surrounding microenvironment by nanosecond laser pulses for nanomedicine applications. Phys Med Biol 54:5541–5560. https://doi.org/10.1088/0031-9155/54/18/013

    Article  CAS  PubMed  Google Scholar 

  24. Baffou G, Quidant R, Girard C (2009) Heat generation in plasmonic nanostructures: influence of morphology. Appl Phys Lett 94:153109. https://doi.org/10.1063/1.3116645

    Article  CAS  Google Scholar 

  25. Ni Y, Kan C, Gao Q, Wei J, Xu H, Wang Ch (2016) Heat generation and stability of a plasmonic nanogold system. J Phys D: Appl Phys 49:055302. https://doi.org/10.1088/0022-3727/49/5/055302

    Article  CAS  Google Scholar 

  26. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677. https://doi.org/10.1021/jp026731y

    Article  CAS  Google Scholar 

  27. Asgharian A, Yadipour R, Kiani G, Baghban H (2020) Heat generation and light transmission in porous plasmonic nanostructures. J Nanophoton 14(1):016007. https://doi.org/10.1117/1.JNP.14.016007

    Article  CAS  Google Scholar 

  28. Govorov AO, Zhang W, Skeini T, Richardson H, Lee J, Kotov NA (2006) Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances. Nanoscale Res Lett 1:84–90. https://doi.org/10.1007/s11671-006-9015-7

    Article  PubMed Central  Google Scholar 

  29. Govorov AO, Richardson HH (2007) Generating heat with metal nanoparticles. Nanotoday 2(1):30–38

    Article  Google Scholar 

  30. Ishii S, Sugavaneshwar RP, Tadaaki N (2016) Titanium nitride nanoparticles as plasmonic solar heat transducers. J Phys Chem C 120(4):2343–2348. https://doi.org/10.1021/acs.jpcc.5b09604

    Article  CAS  Google Scholar 

  31. Finger F, Welter K, Urbain F, Smirnov V (2020) Photoelectrochemical water splitting using adapted silicon based multi-junction solar cell structures: development of solar cells and catalysts, upscaling of combined photovoltaic-electrochemical devices and performance stability. Z Phys Chem 234(6):1055–1095. https://doi.org/10.1515/zpch-2019-1453

    Article  CAS  Google Scholar 

  32. Sebastian N (2015) Limiting approach to generalized gamma bessel model via fractional calculus and its applications in various disciplines. Axioms 4:385–399. https://doi.org/10.3390/axioms4030385

    Article  Google Scholar 

  33. Würfel P, Finkbeiner S, Daub E (1995) Generalized Planck’s radiation law for luminescence via indirect transitions. Appl Phys A 60:67–70. https://doi.org/10.1007/BF01577615

    Article  Google Scholar 

  34. Planck M (1901) Distribution of energy in the spectrum. Ann Phys 4:553–563

    Article  Google Scholar 

  35. Zhou L, Tan Y, Wang J et al (2016) 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat Photon 10:393–398. https://doi.org/10.1038/nphoton.2016.75

    Article  CAS  Google Scholar 

  36. Balela MD, Amores KL (2015) Formation of oxidation-stable copper nanoparticles in water. Adv Mater Res 1131:255–259. https://doi.org/10.4028/www.scientific.net/AMR.1131.255

    Article  Google Scholar 

  37. Chang SJ, Tung CA, Chen BW, Chou YC, Li CC (2013) Synthesis of non-oxidative copper nanoparticles. RSC Adv 3:24005–24008. https://doi.org/10.1039/C3RA44768E

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. All authors read and approved the final manuscript and consent for publication data and images.

Corresponding author

Correspondence to Amir Asgharian.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asgharian, A., Yadipour, R., Kiani, G. et al. Proposing a Numerical Method to Calculate the Absorbed Power of Plasmonic Nanoparticles (Au, Ag, Al, and Cu) with Different Morphologies Under Solar Irradiance. Plasmonics 17, 1527–1547 (2022). https://doi.org/10.1007/s11468-022-01641-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-022-01641-8

Keywords

Navigation