Log in

HfAlO-based ferroelectric memristors for artificial synaptic plasticity

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Memristors have received much attention for their ability to achieve multilevel storage and synaptic learning. However, the main factor that hinders the application of memristors to simulate neural synapses is the instability of the formation and breakage of conductive filaments inside traditional memristors, which makes it difficult to simulate the function of biological synapses in practice. However, the resistance change of ferroelectric memristors relies on the polarization inversion of the ferroelectric thin film, thus avoiding the above problem. In this study, a Pd/HfAlO/LSMO/STO/Si ferroelectric memristor is proposed, which can achieve resistive switching properties through the combined action of ferroelectricity and oxygen vacancies. The I–V curves show that the device has good stability and uniformity. In addition, the effect of pulse sequence modulation on the conductance was investigated, and the biological synaptic function and learning behavior were simulated successfully. The results of the above studies provide a basis for the development of ferroelectric memristors with neurosynaptic-like behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. C. Zhang, Y. Chen, M. Yi, Y. Zhu, T. Li, L. Liu, L. Wang, L. **e, and W. Huang, Recent progress in memristors for stimulating synaptic plasticity, Scientia Sinica Informationis 48(2), 115 (2018)

    Article  Google Scholar 

  2. J. Nicholas, R. Akshay Krishna, S. Abhronil, S. John, and N. Vijaykrishnan, 2019 IEEE International Symposium on Circuits and Systems (IEEE ISCAS), pp 1–5 (2019)

  3. S. B. Furber, D. R. Lester, L. A. Plana, J. D. Garside, E. Painkras, S. Temple, and A. D. Brown, Overview of the spinnaker system architecture, IEEE Trans. Comput. 62(12), 2454 (2012)

    Article  MathSciNet  Google Scholar 

  4. K. Sun, J. Chen, and X. Yan, The future of memristors: Materials engineering and neural networks, Adv. Funct. Mater. 31(8), 2006773 (2021)

    Article  Google Scholar 

  5. H. Kim, M. P. Sah, C. Yang, and L. O. Chua, 2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010), pp 1–6 (2010)

  6. D. Niu, Y. Chen, and Y. **e, Proceedings of the 16th ACM/IEEE international symposium on Low power electronics and design, pp 25–30 (2010)

  7. A. Pisarev, A. Busygin, S. Udovichenko, and O. Maevsky, 3D memory matrix based on a composite memristor-diode crossbar for a neuromorphic processor, Microelectron. Eng. 198, 1 (2018)

    Article  Google Scholar 

  8. A. Sokolov, M. Ali, H. Li, Y. R. Jeon, M. J. Ko, and C. Choi, Partially oxidized MXene Ti3C2Tx sheets for memristor having synapse and threshold resistive switching characteristics, Adv. Electron. Mater. 7(2), 2000866 (2021)

    Article  Google Scholar 

  9. T. Yu, F. He, J. Zhao, Z. Zhou, J. Chang, J. Chen, and X. Yan, Hf0.5Zr0.5O2-based ferroelectric memristor with multilevel storage potential and artificial synaptic plasticity, Sci. China Mater. 64(3), 727 (2021)

    Article  Google Scholar 

  10. V. Mikheev, A. Chouprik, Y. Lebedinskii, S. Zarubin, A. M. Markeev, A. V. Zenkevich, and D. Negrov, Memristor with a ferroelectric HfO2 layer: In which case it is a ferroelectric tunnel junction, Nanotechnology. 31(21), 215205 (2020)

    Article  ADS  Google Scholar 

  11. K. Humood, S. Saylan, M. Abi Jaoude, B. Mohammad, and F. Ravaux, Impact of vacuum on the resistive switching in HfO2-based conductive-bridge RAM with highly-doped silicon bottom electrode, Mater. Sci. Eng. B 271, 115267 (2021)

    Article  Google Scholar 

  12. S. Chakrabartty, S. Acharjee, A. Al-Shidaifat, M. Biswas, and H. Song, Gd-doped HfO2 memristor device, evaluation robustness by image noise cancellation and edge detection filter for neuromorphic computing, IEEE Access 7, 157922 (2019)

    Article  Google Scholar 

  13. Y. Wang, G. Niu, Q. Wang, S. Roy, L. Dai, H. Wu, Y. Sun, S. Song, Z. Song, Y. **e, Z. Ye, X. Meng, and W. Ren, Reliable resistive switching of epitaxial single crystalline cubic Y-HfO2 RRAMs with Si as bottom electrodes, Nanotechnology 31(20), 205203 (2020)

    Article  ADS  Google Scholar 

  14. H. Kohlstedt, N. A. Pertsev, J. R. Contreras, and R. Waser, Theoretical current-voltage characteristics of ferroelectric tunnel junctions, Phys. Rev. B 72(12), 125341 (2005)

    Article  ADS  Google Scholar 

  15. R. Guo, Z. Wang, S. Zeng, K. Han, L. Huang, D. G. Schlom, T. Venkatesan, Ariando, and J. Chen, Functional ferroelectric tunnel junctions on silicon, Sci. Rep. 5(1), 12576 (2015)

    Article  ADS  Google Scholar 

  16. J. Choi and S. Kim, Nonlinear characteristics of complementary resistive switching in HfAlOx-based memristor for high-density cross-point array structure, Coatings 10(8), 765 (2020)

    Article  Google Scholar 

  17. T. Y. Wang, J. L. Meng, M. Y. Rao, Z. Y. He, L. Chen, H. Zhu, Q. Q. Sun, S. J. Ding, W. Z. Bao, P. Zhou, and D. W. Zhang, Three-dimensional nanoscale flexible memristor networks with ultralow power for information transmission and processing application, Nano Lett. 20(6), 4111 (2020)

    Article  ADS  Google Scholar 

  18. C. Mahata, M. Ismail, and S. Kim, Conductance quantization control and neuromorphic properties in Pt-nanoparticle incorporated HfAlOx alloy memristor, Appl. Phys. Lett. 119(22), 221601 (2021)

    Article  ADS  Google Scholar 

  19. T. Miao, D. Yu, L. **ng, D. Li, L. Jiao, W. Ma, and X. Zhang, Current rectification in a structure: ReSe2/Au contacts on both sides of ReSe2, Nanoscale Res. Lett. 14(1), 1 (2019)

    Article  ADS  Google Scholar 

  20. E. Covi, S. Brivio, M. Fanciulli, and S. Spiga, Synaptic potentiation and depression in Al: HfO2-based memristor, Microelectron. Eng. 147, 41 (2015)

    Article  Google Scholar 

  21. Z. Xu, L. Yu, Y. Wu, C. Dong, N. Deng, X. Xu, J. Miao, and Y. Jiang, Low-energy resistive random access memory devices with no need for a compliance current, Sci. Rep. 5, 10409 (2015)

    Article  ADS  Google Scholar 

  22. H. Boschker, M. Huijben, A. Vailionis, J. Verbeeck, S. van Aert, M. Luysberg, S. Bals, G. van Tendeloo, E. P. Houwman, G. Koster, D. H. A. Blank, and G. Rijnders, Optimized fabrication of high-quality La0.67Sr0.33MnO3 thin films considering all essential characteristics, J. Phys. D Appl. Phys. 44(20), 205001 (2011)

    Article  ADS  Google Scholar 

  23. J. H. Chang, C. G. Zheng, H. H. Chen, P. T. Chen, C. B. Liu, K. Y. Huang, H. H. Hsu, C. H. Cheng, W. C. Chou, and S. T. Han, Effect of cap** layer on the ferroelectricity of hafnium oxide, Thin Solid Films 753, 139274 (2022)

    Article  ADS  Google Scholar 

  24. H. M. Yau, X. Chen, C. M. Wong, D. Chen, and J. Dai, Orientation control of phase transition and ferroelectricity in Al-doped HfO2 thin films, Mater. Charact. 176, 111114 (2021)

    Article  Google Scholar 

  25. E. O. Filatova, A. A. Sokolov, I. V. Kozhevnikov, E. Y. Taracheva, O. S. Grunsky, F. Schaefers, and W. Braun, Investigation of the structure of thin HfO2 films by soft X-ray reflectometry techniques, J. Phys.: Condens. Matter 21(18), 185012 (2009)

    ADS  Google Scholar 

  26. Z. Fan, J. X. **ao, J. X. Wang, L. Zhang, J. Y. Deng, Z. Y. Liu, Z. L. Dong, J. Wang, and J. S. Chen, Ferro-electricity and ferroelectric resistive switching in sputtered Hf0.5Zr0.5O2 thin films, Appl. Phys. Lett. 108(23), 232905 (2016)

    Article  ADS  Google Scholar 

  27. Y. Li, S. Long, Q. Liu, H. Lü, S. Liu, and M. Liu, An overview of resistive random access memory devices, Chin. Sci. Bull. 56(28–29), 3072 (2011)

    Article  Google Scholar 

  28. L. Yin, R. Cheng, Z. Wang, F. Wang, M. G. Sendeku, Y. Wen, X. Zhan, and J. He, Two-dimensional unipolar memristors with logic and memory functions, Nano Lett. 20(6), 4144 (2020)

    Article  ADS  Google Scholar 

  29. L. Yin, R. Q. Cheng, Y. Wen, C. S. Liu, and J. He, Emerging 2D memory devices for in-memory computing, Adv. Mater. 33(29), 2007081 (2021)

    Article  Google Scholar 

  30. H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, C. H. Lien, and M. J. Tsai, 2008 IEEE International Electron Devices Meeting, pp 1–4 (2008)

  31. S. Yu, X. Guan, and H. S. P. Wong, Conduction mechanism of TiN/HfOx/Pt resistive switching memory: A trap-assisted-tunneling model, Appl. Phys. Lett. 99(6), 063507 (2011)

    Article  ADS  Google Scholar 

  32. C. Cagli, F. Nardi, and D. Ielmini, Modeling of set/reset operations in NiO-based resistive-switching memory devices, IEEE Trans. Electron Dev. 56(8), 1712 (2009)

    Article  ADS  Google Scholar 

  33. W. K. Cheng, F. Wang, Y. M. Han, Z. C. Zhang, J. S. Zhao, and K. L. Zhang, HfO2-based resistive switching memory with CNTs electrode for high density storage, Solid-State Electron. 132, 19 (2017)

    Article  ADS  Google Scholar 

  34. X. Yan, J. Wang, M. Zhao, X. Li, H. Wang, L. Zhang, C. Lu, and D. Ren, Artificial electronic synapse characteristics of a Ta/Ta2O5−x/Al2O3/InGaZnO4 memristor device on flexible stainless steel substrate, Appl. Phys. Lett. 113(1), 013503 (2018)

    Article  ADS  Google Scholar 

  35. H. Algadi, C. Mahata, T. Alsuwian, M. Ismail, D. Kwon, and S. Kim, Gradual resistive switching and synaptic properties of ITO/HfAlO/ITO device embedded with Pt nanoparticles, Mater. Lett. 298, 130011 (2021)

    Article  Google Scholar 

  36. S. H. Kim, O. Kwon, H. Ryu, and S. J. Kim, Improved synaptic device properties of HfAlOx dielectric on highly doped silicon substrate by partial reset process, Metals (Basel) 11(5), 772 (2021)

    Article  Google Scholar 

  37. R. W. Kao, H. K. Peng, K. Y. Chen, and Y. H. Wu, HfZrOx-based switchable diode for logic-in-memory applications, IEEE Trans. Electron Dev. 68(2), 545 (2021)

    Article  ADS  Google Scholar 

  38. Z. Wu and J. Zhu, Enhanced unipolar resistive switching characteristics of Hf0.5Zr0.5O2 thin films with high ON/OFF ratio, Materials (Basel) 10(3), 322 (2017)

    Article  ADS  Google Scholar 

  39. M. Li, J. Zhou, X. **g, M. Zeng, S. Wu, J. Gao, Z. Zhang, X. Gao, X. Lu, J. M. Liu, and M. Alexe, Controlling resistance switching polarities of epitaxial BaTiO3 films by mediation of ferroelectricity and oxygen vacancies, Adv. Electron. Mater. 1(6), 1500069 (2015)

    Article  Google Scholar 

  40. V. V. Zhirnov and R. K. Cavin, Charge of the heavy brigade, Nat. Nanotechnol. 3(7), 377 (2008)

    Article  ADS  Google Scholar 

  41. H. T. Yi, T. Choi, S. G. Choi, Y. S. Oh, and S. W. Cheong, Mechanism of the switchable photovoltaic effect in ferroelectric BiFeO3, Adv. Mater. 23(30), 3403 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of Hebei Province (No. F2021201009), the National Natural Science Foundation of China (No. 62104058), the Natural Science Foundation of Hebei Province (No. F2021201022), the Science and Technology Project of Hebei Education Department (No. QN2020178), the Foundation of President of Hebei University (No. XZJJ201910), and Advanced Talents Incubation Program of the Hebei University (No. 521000981362).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **aobing Yan.

Ethics declarations

Declarations The authors declare that they have no competing interests and there are no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Jian, Z., Wang, Z. et al. HfAlO-based ferroelectric memristors for artificial synaptic plasticity. Front. Phys. 18, 63603 (2023). https://doi.org/10.1007/s11467-023-1310-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-023-1310-6

Keywords

Navigation