Log in

Interlayer interaction mechanism and its regulation on optical properties of bilayer SiCNSs

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Silicon carbide nanosheets (SiCNSs) have a very broad application prospect in the field of new two-dimensional (2D) materials. In this paper, the interlayer interaction mechanism of bilayer SiCNSs (BL-SiCNSs) and its effect on optical properties are studied by first principles. Taking the charge and dipole moment of the layers as parameters, an interlayer coupling model is constructed which is more convenient to control the photoelectric properties. The results show that the stronger the interlayer coupling, the smaller the band gap of BL-SiCNSs. The interlayer coupling also changes the number of absorption peaks and causes the red or blue shift of absorption peaks. The strong interlayer coupling can produce obvious dispersion and regulate the optical transmission properties. The larger the interlayer distance, the smaller the permittivity in the vertical direction. However, the permittivity of the parallel direction is negative in the range of 150–300 nm, showing obvious metallicity. It is expected that the results will provide a meaningful theoretical basis for further study of SiCNSs optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. J. Wang, X. Y. Fang, G. Y. Feng, W. L. Song, Z. L. Hou, H. B. **, J. Yuan, and M. S. Cao, Scattering mechanisms and anomalous conductivity of heavily N-doped 3C-SiC in ultraviolet region, Phys. Lett. A 374(22), 2286 (2010)

    Article  ADS  Google Scholar 

  2. X. L. Feng, M. H. Matheny, C. A. Zorman, M. Mehregany, and M. L. Roukes, Low voltage nanoelectromechanical switches based on silicon carbide nanowires, Nano Lett. 10(8), 2891 (2010)

    Article  ADS  Google Scholar 

  3. X. Y. Fang, K. Wang, Z. L. Hou, H. B. **, Y. Q. Li, and M. S. Cao, Electronic scattering leads to anomalous thermal conductivity of n-type cubic silicon carbide in the high-temperature region, J. Phys.: Condens. Matter 24(44), 445802 (2012)

    Google Scholar 

  4. R. Maboudian, C. Carraro, D. G. Senesky, and C. S. Roper, Advances in silicon carbide science and technology at the micro- and nanoscales, J. Vac. Sci. Technol. A 31(5), 050805 (2013)

    Article  Google Scholar 

  5. H. Okumura, A roadmap for future wide bandgap semiconductor power electronics, MRS Bull. 40(5), 439 (2015)

    Article  ADS  Google Scholar 

  6. B. Whitaker, A. Barkley, Z. Cole, B. Passmore, D. Martin, T. R. McNutt, A. B. Lostetter, J. S. Lee, and K. Shiozaki, A high-density, high-efficiency, isolated onboard vehicle battery charger utilizing silicon carbide power devices, IEEE Trans. Power Electron. 29(5), 2606 (2014)

    Article  ADS  Google Scholar 

  7. H. Ou, Y. Ou, A. Argyraki, S. Schimmel, M. Kaiser, P. Wellmann, M. K. Linnarsson, V. Jokubavicius, J. Sun, R. Liljedahl, and M. Syväjärvi, Advances in wide bandgap SiC for optoelectronics, Eur. Phys. J. B 87(3), 58 (2014)

    Article  ADS  Google Scholar 

  8. G. Cheng, T. H. Chang, Q. Qin, H. Huang, and Y. Zhu, Mechanical properties of silicon carbide nanowires: effect of size-dependent defect density, Nano Lett. 14(2), 754 (2014)

    Article  ADS  Google Scholar 

  9. M. Awais, H. Mousa, and K. Teker, Effect of pH on transport characteristics of silicon carbide nanowire field-effect transistor (SiCNW-FET), J. Mater. Sci. Mater. Electron. 32(3), 3431 (2021)

    Article  Google Scholar 

  10. X. Zhang, J. Wang, Z. Yang, X. Tang, and Y. Yue, Strong structural occupation ratio effect on mechanical properties of silicon carbide nanowires, Sci. Rep. 10(1), 11386 (2020)

    Article  Google Scholar 

  11. S. Li, J. Li, Q. Su, X. Liu, H. Zhao, and M. Ding, Enhanced n-type conductivity of 6H-SiC nanowires by nitrogen do**, Micro & Nano Lett. 14(9), 999 (2019)

    Article  Google Scholar 

  12. H. Gao, H. Wang, M. Niu, L. Su, X. Fan, J. Wen, and Y. Wei, Oxidation simulation study of silicon carbide nanowires: A carbon-rich interface state, Appl. Surf. Sci. 493, 882 (2019)

    Article  ADS  Google Scholar 

  13. Y. H. Jia, P. Gong, S. L. Li, W. D. Ma, X. Y. Fang, Y. Y. Yang, and M. S. Cao, Effects of hydroxyl groups and hydrogen passivation on the structure, electrical and optical properties of silicon carbide nanowires, Phys. Lett. A 384(4), 126106 (2020)

    Article  Google Scholar 

  14. P. Nematollahi and M. D. Esrafili, A DFT study on the N2O reduction by CO molecule over silicon carbide nanotubes and nanosheets, RSC Adv. 6(64), 59091 (2016)

    Article  ADS  Google Scholar 

  15. R. S. Singh and A. Solanki, Modulation of electronic properties of silicon carbide nanotubes via sulphurdo**: An ab initio study, Phys. Lett. A 380(11–12), 1201 (2016)

    Article  ADS  Google Scholar 

  16. W. Q. Lin, F. Li, G. H. Chen, S. T. **ao, L. Y. Wang, and Q. Wang, A study on the adsorptions of SO2 on pristine and phosphorus-doped silicon carbide nanotubes as potential gas sensors, Ceram. Int. 46(16), 25171 (2020)

    Article  Google Scholar 

  17. Y. Y. Yang, P. Gong, W. D. Ma, R. Hao, and X. Y. Fang, Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes, Chin. Phys. B 30(6), 067803 (2021)

    Article  ADS  Google Scholar 

  18. P. Gong, Y. Y. Yang, W. D. Ma, X. Y. Fang, X. L. **g, Y. H. Jia, and M. S. Cao, Transport and recombination properties of group-III doped SiCNTs, Physica E 128, 114578 (2021)

    Article  Google Scholar 

  19. J. M. Zhang, F. L. Zheng, Y. Zhang, and V. Ji, First-principles study on electronic properties of SiC nanoribbon, J. Mater. Sci. 45(12), 3259 (2010)

    Article  ADS  Google Scholar 

  20. Y. Z. Li, M. Y. Sun, X. X. Yu, W. K. Liu, S. S. Kong, Y. L. Li, and X. Y. Fang, First-principles study on optical properties of group-III doped SiCNRs, Mater. Today Commun. 32, 104179 (2022)

    Article  Google Scholar 

  21. Y. Z. Li, M. Y. Sun, X. X. Yu, W. K. Liu, S. S. Kong, Y. L. Li, and X. Y. Fang, Theoretical study on transport properties of group-III doped SiCNRs, Eur. Phys. J. Plus 137(9), 995 (2022)

    Article  Google Scholar 

  22. E. Bekaroglu, M. Topsakal, S. Cahangirov, and S. Ciraci, First-principles study of defects and adatoms in silicon carbide honeycomb structures, Phys. Rev. B 81(7), 075433 (2010)

    Article  ADS  Google Scholar 

  23. H. L. Zhu, Z. F. Hong, C. J. Zhou, Q. H. Wu, T. C. Zheng, L. Yang, S. Q. Lan, and W. F. Yang, Energy band alignment of 2D/3D MoS2/4H-SiC heterostructure modulated by multiple interfacial interactions, Front. Phys. 18(1), 13301 (2023)

    Article  ADS  Google Scholar 

  24. S. S. Lin, Light-emitting two-dimensional ultrathin silicon carbide, J. Phys. Chem. C 116(6), 3951 (2012)

    Article  Google Scholar 

  25. L. Sun, B. Wang, and Y. Wang, A novel silicon carbide nanosheet for high-performance humidity sensor, Adv. Mater. Interfaces 5(6), 1701300 (2018)

    Article  Google Scholar 

  26. M. Houmad, O. Dakir, A. Abbassi, A. Benyoussef, A. El Kenz, and H. Ez-Zahraouy, Optical properties of SiC nanosheet, Optik (Stuttg.) 127(4), 1867 (2016)

    Article  ADS  Google Scholar 

  27. X. Lin, S. Lin, Y. Xu, A. A. Hakro, T. Hasan, B. Zhang, B. Yu, J. Luo, E. Li, and H. Chen, Ab initio study of electronic and optical behavior of two-dimensional silicon carbide, J. Mater. Chem. C 1(11), 2131 (2013)

    Article  Google Scholar 

  28. Q. Chen, Y. Jiang, Y. Wang, H. Li, C. Yu, J. Cui, Y. Qin, J. Sun, J. Yan, H. Zheng, D. Chen, J. Wu, Y. Zhang, and Y. Wu, Enhanced supercapacitive performance of novel ultrathin sic nanosheets directly by liquid phase exfoliation, Inorg. Chem. Commun. 106(6), 174 (2019)

    Article  Google Scholar 

  29. L. Sun, B. Wang, and Y. Wang, High-temperature gas sensor based on novel Pt single atoms@SnO2 nanorods@SiC nanosheets multi-heterojunctions, ACS Appl. Mater. Interfaces 12(19), 21808 (2020)

    Article  Google Scholar 

  30. W. K. Liu, S. S. Kong, X. X. Yu, Y. L. Li, L. Z. Yang, Y. Ma, and X. Y. Fang, Interlayer coupling, electronic and optical properties of few-layer silicon carbide nanosheets, Mater. Today Commun. 34, 105030 (2023)

    Article  Google Scholar 

  31. P. N. Nirmalraj, T. Lutz, S. Kumar, G. S. Duesberg, and J. J. Boland, Nanoscale map** of electrical resistivity and connectivity in graphene strips and networks, Nano Lett. 11(1), 16 (2011)

    Article  ADS  Google Scholar 

  32. X. Y. Fang, X. X. Yu, H. M. Zheng, H. B. **, L. Wang, and M. S. Cao, Temperature-and thickness-dependent electrical conductivity of few-layer graphene and graphene nanosheets, Phys. Lett. A 379(37), 2245 (2015)

    Article  ADS  Google Scholar 

  33. J. Song, H. Liu, and D. J. Henry, Layer effects on electronic structures of multi-walled armchair silicon carbide nanotubes, Comput. Mater. Sci. 125, 117 (2016)

    Article  Google Scholar 

  34. H. Cheng and J. C. Zheng, Ab initio study of anisotropic mechanical and electronic properties of strained carbon—nitride nanosheet with interlayer bonding, Front. Phys. 16(4), 43505 (2021)

    Article  ADS  Google Scholar 

  35. P. Gong, Y. Z. Li, M. Y. Sun, X. Y. Fang, X. L. **g, and M. S. Cao, Effect of inter-wall coupling on the electronic structure and optical properties of group-III doped SiCNTs, Physica B 620(4), 413276 (2021)

    Article  Google Scholar 

  36. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  ADS  Google Scholar 

  37. A. Tkatchenko and M. Scheffler, Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data, Phys. Rev. Lett. 102(7), 073005 (2009)

    Article  ADS  Google Scholar 

  38. Y. Z. Li, M. Y. Sun, X. X. Yu, W. K. Liu, S. S. Kong, P. Gong, and X. Y. Fang, Comparative study on the optical properties of group-V doped SiC nanoribbons, Mater. Sci. Eng. B 284, 115896 (2022)

    Article  Google Scholar 

  39. M. Y. Sun, Y. Z. Li, X. X. Yu, W. K. Liu, S. S. Kong, P. Gong, and X. Y. Fang, Comparative study on transport and optical properties of silicon carbide nanoribbons with different terminations, Eur. Phys. J. B 95(9), 142 (2022)

    Article  ADS  Google Scholar 

  40. S. Kitipornchai, X. Q. He, and K. M. Liew, Continuum model for the vibration of multilayered graphene sheets, Phys. Rev. B 72(7), 075443 (2005)

    Article  ADS  Google Scholar 

  41. G. Mie, Zur kinetischen theorie der einatomigen Körper, Ann. Phys. 316(8), 657 (1903)

    Article  Google Scholar 

  42. A. N. Kolmogorov and V. H. Crespi, Smoothest bearings: Interlayer sliding in multiwalled carbon nanotubes, Phys. Rev. Lett. 85(22), 4727 (2000)

    Article  ADS  Google Scholar 

  43. P. Lou and J. Y. Lee, Electrical control of magnetization in narrow zigzag silicon carbon nanoribbons, J. Phys. Chem. C 113(50), 21213 (2009)

    Article  Google Scholar 

  44. A. N. Kolmogorov and V. H. Crespi, Registry-dependent interlayer potential for graphitic systems, Phys. Rev. B 71(23), 235415 (2005)

    Article  ADS  Google Scholar 

  45. D. L. Wood and J. S. Tauc, Weak absorption tails in amorphous semiconductors, Phys. Rev. B 5(8), 3144 (1972)

    Article  ADS  Google Scholar 

  46. T. Kamiya, S. Aiba, M. Miyakawa, K. Nomura, S. Matsuishi, K. Hayashi, K. Ueda, M. Hirano, and H. Hosono, Field-induced current modulation in nanoporous semiconductor, electron-doped 12CaO·7Al2O3, Chem. Mater. 17(25), 6311 (2005)

    Article  Google Scholar 

  47. W. D. Ma, W. K. Liu, P. Gong, Y. H. Jia, Y. Y. Yang, and X. Y. Fang, Effects of different valence atoms on surface passivation of silicon carbide nanowires, Int. J. Mod. Phys. B 35(20), 2150207 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by Hebei Natural Science Foundation (Grant No. A2021203030) and the National Natural Science Foundation of China (Grant No. 11574261).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **ao-Yong Fang  (房晓勇).

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, SS., Liu, WK., Yu, XX. et al. Interlayer interaction mechanism and its regulation on optical properties of bilayer SiCNSs. Front. Phys. 18, 43302 (2023). https://doi.org/10.1007/s11467-023-1263-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-023-1263-9

Keywords

Navigation