Log in

Laser ablation assisted spark induced breakdown spectroscopy and its application

  • Topical Review
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Recently, laser ablation assisted spark induced breakdown spectroscopy (LA-SIBS) has been growing rapidly and continue to be extended to a broad range of materials analysis. Characterized by employing a specifically designed high voltage and pulse discharge circuit to generate a spark and used to enhance plasma emission produced by laser ablation, allows direct analysis of materials without prior sample preparation. This paper reviews recent development and application of laser ablation assisted spark induced breakdown spectroscopy for material analysis. Following a summary of fundamentals and instrumentation of the LA-SIBS analytical technique, the development and applications of laser ablation assisted spark induced breakdown spectroscopy for the analysis of conducting materials and insulating materials is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Brech and L. Cross, Optical microemission stimulated by a ruby laser, Appl. Spectrosc. 16(2), 59 (1962)

    Google Scholar 

  2. S. D. Rasberry, B. F. Scribner and M. Margoshes, Laser probe excitation in spectrochemical analysis (I): Characteristics of the source, Appl. Opt. 6(1), 81 (1967)

    ADS  Google Scholar 

  3. A. Bengtson, Laser Induced Breakdown Spectroscopy compared with conventional plasma optical emission techniques for the analysis of metals — A review of applications and analytical performance, Spectrochim. Acta B At. Spectrosc. 134, 123 (2017)

    ADS  Google Scholar 

  4. Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, Laser-induced breakdown Spectroscopy in China, Front. Phys. 9(4), 419 (2014)

    ADS  Google Scholar 

  5. A. Cremers and L. Radziemski, Handbook of Laser-induced Breakdown Spectroscopy, London: John Wiley & Sons, 2006

    Google Scholar 

  6. Z. Wang, F. Dong, and W. Zhou, A rising force for the development of laser-induced breakdown spectroscopy, Plasma. Sci. Technol. 17(8), 617 (2015)

    ADS  Google Scholar 

  7. V. I. Babushok, F. C. Jr DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement, Spectrochim. Acta B At. Spectrosc. 61(9), 999 (2006)

    ADS  Google Scholar 

  8. J. P. Walters, Historical advances in spark emission spectroscopy, Appl. Spectrosc. 23(4), 317 (1969)

    ADS  Google Scholar 

  9. F. R. Doucet, T. F. Belliveau, J.L. Fortier, and J. Hubert, Comparative study of laser induced plasma spectroscopy and spark-optical emission spectroscopy for quantitative analysis of aluminium alloys, J. Anal. At. Spectrom. 19(4), 499 (2004)

    Google Scholar 

  10. M. Hemmerlin, R. Meilland, H. Falk, P. Wintjens, and L. Paulard, Application of vacuum ultraviolet laser-induced breakdown spectrometry for steel analysis-comparison with spark-optical emission spectrometry figures of merit, Spectrochim. Acta B At. Spectrosc. 56(6), 661 (2001)

    ADS  Google Scholar 

  11. A. De Giacomo, M. Dell’Aglio, D. Bruno, R. Gaudiuso, and O. De Pascale, Experimental and theoretical comparison of single-pulse and double-pulse laser induced breakdown spectroscopy on metallic samples, Spectrochim. Acta B At. Spectrosc. 63(7), 805 (2008)

    ADS  Google Scholar 

  12. X. Su, W. Zhou, and H. Qian, Optical emission character of collinear dual pulse laser plasma with cylindrical cavity confinement, J. Anal. At. Spectrom. 29(12), 2356 (2014)

    Google Scholar 

  13. Y. Yu, W. Zhou, and X. Su, Detection of Cu in solution with double pulse laser-induced breakdown spectroscopy, Opt. Commun. 333, 62 (2014)

    ADS  Google Scholar 

  14. O. A. Nassef and H. E. Elsayed-Ali, Spark discharge assisted laser induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 60(12), 1564 (2005)

    ADS  Google Scholar 

  15. K. X. Li, W. D. Zhou, Q. M. Shen, Z. J. Ren, and B. J. Peng, Laser ablation assisted spark induced breakdown spectroscopy on soil samples, J. Anal. At. Spectrom. 25(9), 1475 (2010)

    Google Scholar 

  16. Y. Q. Chen, Q. A. Zhang, G. A. Li, R. H. Li, and J. Y. Zhou, Laser ignition assisted spark-induced breakdown spectroscopy for the ultra-sensitive detection of trace mercury ions in aqueous solutions, J. Anal. At. Spectrom. 25(12), 1969 (2010)

    Google Scholar 

  17. W. Zhou, K. Li, X. Li, H. Qian, J. Shao, X. Fang, P. **e, and W. Liu, Development of a nanosecond discharge-enhanced laser plasma spectroscopy, Opt. Lett. 36(15), 2961 (2011)

    ADS  Google Scholar 

  18. W. D. Zhou, K. X. Li, Q. M. Shen, Q. L. Chen, and J. M. Long, Optical emission enhancement using laser ablation combined with fast pulse discharge, Opt. Express 18(3), 2573 (2010)

    ADS  Google Scholar 

  19. S. Grünberger, G. Watzl, N. Huber, S. Eschlbock-Fuchs, J. Hofstadler, A. Pissenberger, H. Duchaczek, S. Trautner, and J. D. Pedarnig, Chemical imaging with laser ablation-spark discharge-optical emission spectroscopy (LA-SD-OES) and laser-induced breakdown spectroscopy (LIBS), Opt. Laser Technol. 123, 105944 (2020)

    Google Scholar 

  20. S. Eschlbōck-Fuchs, P. J. Kolmhofer, M. A. Bodea, J. G. Hechenberger, N. Huber, R. Rōssler, and J. D. Pedarnig, Boosting persistence time of laser-induced plasma by electric arc discharge for optical emission spectroscopy, Spectrochim. Acta B At. Spectrosc. 109, 31 (2015)

    ADS  Google Scholar 

  21. X. He, B. Dong, Y. Chen, R. Li, F. Wang, J. Li, and Z. Cai, Analysis of magnesium and copper in aluminum alloys with high repetition rate laser-ablation spark-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 141, 34 (2018)

    ADS  Google Scholar 

  22. H. Sobral and A. Robledo-Martinez, Signal enhancement in laser-induced breakdown spectroscopy using fast square-pulse discharges, Spectrochim. Acta B At. Spectrosc. 124, 67 (2016)

    ADS  Google Scholar 

  23. B. H. P. Broks, J. Hendriks, W. J. M. Brok, G. J. H. Brussaard, and J. J. A. M. van der Mullen, Theoretical investigation of a photoconductively switched high-voltage spark gap, J. Appl. Phys. 99(12), 123302 (2006)

    ADS  Google Scholar 

  24. W. Zhou, X. Su, H. Qian, K. Li, X. Li, Y. Yu, and Z. Ren, Discharge character and optical emission in a laser ablation nanosecond discharge enhanced silicon plasma, J. Anal. At. Spectrom. 28(5), 702 (2013)

    Google Scholar 

  25. L. I. Kexue, W. D. Zhou, Q. M. Shen, J. Shao, and H. G. Qian, Signal enhancement of lead and arsenic in soil using laser ablation combined with fast electric discharge, Spectrochim. Acta B At. Spectrosc. 65(5), 420 (2010)

    ADS  Google Scholar 

  26. M. M. Hassanimatin and S. H. Tavassoli, Experimental investigation of effective parameters on signal enhancement in spark assisted laser induced breakdown spectroscopy, Phys. Plasmas 25(5), 053302 (2018)

    ADS  Google Scholar 

  27. Y. Jiang, R. Li, and Y. Chen, Elemental analysis of copper alloys with laser-ablation spark-induced breakdown spectroscopy based on a fiber laser operated at 30 kHz pulse repetition rate, J. Anal. At. Spectrom. 34(9), 1838 (2019)

    Google Scholar 

  28. A. Robledo-Martinez, H. Sobral, and A. Garcia-Villarreal, Effect of applied voltage and inter-pulse delay in spark-assisted LIBS, Spectrochim. Acta B At. Spectrosc. 144, 7 (2018)

    ADS  Google Scholar 

  29. Y. Wang, Y. Jiang, X. He, Y. Chen, and R. Li, Triggered parallel discharge in laser-ablation spark-induced breakdown spectroscopy and studies on its analytical performance for aluminum and brass samples, Spectrochim. Acta B At. Spectrosc. 150, 9 (2018)

    ADS  Google Scholar 

  30. X. He, R. Li, and Y. Chen, Application of fiber optic high repetition rate laser-ablation spark-induced breakdown spectroscopy on the elemental analysis of aluminum alloys, Appl. Opt. 58(31), 8522 (2019)

    ADS  Google Scholar 

  31. Z. Hou, Z. Wang, J. Liu, W. Ni, and Z. Li, Combination of cylindrical confinement and spark discharge for signal improvement using laser induced breakdown spectroscopy, Opt. Express 22(11), 12909 (2014)

    ADS  Google Scholar 

  32. M. Pérez-Rodríguez, P. M. Dirchwolf, T. V. Silva, R. N. Villafañe, J. A. G. Neto, R. G. Pellerano, and E. C. Ferreira, Brown rice authenticity evaluation by spark discharge-laser-induced breakdown spectroscopy, Food Chem. 297, 124960 (2019)

    Google Scholar 

  33. X. F. Li, W. D. Zhou, and Z. F. Cui, Temperature and electron density of soil plasma generated by LA-FPDPS, Front. Phys. 7(6), 721 (2012)

    ADS  Google Scholar 

  34. W. Zhou, K. Li, H. Qian, Z. Ren, and Y. Yu, Effect of voltage and capacitance in nanosecond pulse discharge enhanced laser-induced breakdown spectroscopy, Appl. Opt. 51(7), B42 (2012)

    Google Scholar 

  35. X. Li, W. Zhou, K. Li, H. Qian, and Z. Ren, Laser ablation fast pulse discharge plasma spectroscopy analysis of Pb, Mg and Sn in soil, Opt. Commun. 285(1), 54 (2012)

    ADS  Google Scholar 

  36. A. L. Vieira, T. V. Silva, F. S. I. de Sousa, G. S. Senesi, D. S. Júnior, E. C. Ferreira, and J. A. G. Neto, Determinations of phosphorus in fertilizers by spark discharge-assisted laser-induced breakdown spectroscopy, Microchem. J. 139, 322 (2018)

    Google Scholar 

  37. A. Seifalinezhad, M. Bahreini, M. M. Hassani Matin, and S. H. Tavassoli, Feasibility study on discrimination of neoplastic and non-neoplastic gastric tissues using spark discharge assisted laser induced breakdown spectroscopy, J. Lasers Med. Sci. 10(1), 64 (2018)

    Google Scholar 

  38. A. Jabbar, M. Akhtar, S. Mehmmod, M. Iqbal, R. Ahmed, and M. A. Baig, Quantification of copper remediation in the Allium cepa L. leaves using electric field assisted laser induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 162, 105719 (2019)

    Google Scholar 

  39. M. L. Vinic and M. R. Ivković, Laser ablation initiated fast discharge for spectrochemical applications, Hem. Ind. 68(3), 381 (2014)

    Google Scholar 

  40. P. Liu, J. Liu, D. Wu, L. Sun, R. Hai, and H. Ding, Study of spark discharge assisted to enhancement of laserinduced breakdown spectroscopic detection for metal materials, Plasma Chem. Plasma Process. 38(4), 803 (2018)

    Google Scholar 

  41. X. He, B. Chen, Y. Chen, R. Li, and F. Wang, Femtosecond laser-ablation spark-induced breakdown spectroscopy and its application to the elemental analysis of aluminum alloys, J. Anal. At. Spectrom. 33(12), 2203 (2018)

    Google Scholar 

  42. M. M. Hassanimatin, S. H. Tavassoli, Y. Nosrati, and A. Safi, A combination of electrical spark and laser-induced breakdown spectroscopy on a heated sample, Phys. Plasmas 26(3), 033303 (2019)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 61975186).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Dong Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, WD., Guo, YH. & Zhang, RR. Laser ablation assisted spark induced breakdown spectroscopy and its application. Front. Phys. 15, 52201 (2020). https://doi.org/10.1007/s11467-020-0969-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-020-0969-1

Keywords

Navigation