Log in

Precision mass measurements of short-lived nuclides at HIRFL-CSR in Lanzhou

  • Review Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

In recent years, extensive short-lived nuclear mass measurements have been carried out at the Heavy- Ion Research Facility (HIRFL) in Lanzhou using Isochronous Mass Spectrometry (IMS). The obtained mass values have been successfully applied to nuclear structure and astrophysics studies. In this contribution, we give a brief introduction to the nuclear mass measurements at HIRFL-CSR facility. Main technical developments are described and recent results are summarized. Furthermore, we envision the future perspective for the next-generation storage ring facility HIAF in Huizhou.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Audi, The history of nuclidic masses and of their evaluation, Int. J. Mass Spectrom. 251, 85 (2006)

    Google Scholar 

  2. K. Blaum, High-accuracy mass spectrometry with stored ions, Phys. Rev. 425, 1 (2006)

    Google Scholar 

  3. D. Lunney, J. M. Pearson, and C. Thibault, Recent trends in the determination of nuclear masses, Rev. Mod. Phys. 75, 1021 (2003)

    ADS  Google Scholar 

  4. A. S. Eddington, The internal constitution of the stars, Nature 106, 14 (1920)

    ADS  Google Scholar 

  5. F. W. Aston, A new mass spectrograph and the wholenumber rule, Proc. Roy. Soc. A 115, 487 (1927)

    ADS  Google Scholar 

  6. F. W. Aston, Mass spectra and isotopes, Nobel Lecture, (1922)

    MATH  Google Scholar 

  7. G. Gamow, Mass defect curve and nuclear constitution, Proc. Royal Society A 126, 632 (1930)

    MATH  Google Scholar 

  8. C. F. von Weizsäcker, Zur Theorie der Kernmassen, Z. Phys. 96, 431 (1935)

    ADS  MATH  Google Scholar 

  9. H. A. Bethe and R. F. Bacher, Stationary states of nuclei, Rev. Mod. Phys. 8, 82 (1936)

    ADS  MATH  Google Scholar 

  10. A. J. Dempster, A new method of positive ray analysis, Phys. Rev. 11, 316 (1918)

    ADS  Google Scholar 

  11. J. H. E. Mattauch, W. Thiele, and A. H. Wapstra, 1964 Atomic mass table, Nucl. Phys. 67, 1 (1965)

    Google Scholar 

  12. H. Ewald and H. Hintenberger, Methoden und Anwendungen der Massenspektroskopie, Zeitschrift Naturforschung Teil A 8, 338 (1953)

    ADS  Google Scholar 

  13. F. Everling, L. A. König, J. H. E. Mattauch, and A. H. Wapstra, Relative nuclidic masses, Nucl. Phys. 18, 529 (1960)

    Google Scholar 

  14. K. Blaum and Yu. A. Litvinov (Eds.), 100 Years of Mass Spectrometry, Int. J. Mass Spectr. 349–350, 1 (2013)

  15. H. Geissel, et al. (Ed.), Encyclopedia of Nuclear Physics and its Applications, 1st Ed., Wiley-VCH, Weinheim, 2013

    Google Scholar 

  16. T. Kubo, In-flight RI beam separator BigRIPS at RIKEN and elsewhere in Japan, Nucl. Instrum. Methods Phys. Res. B 204, 97 (2003)

    ADS  Google Scholar 

  17. J. Kurcewicz, F. Farinon, H. Geissel, S. Pietri, C. Nociforo, et al., Discovery and cross-section measurement of neutron-rich isotopes in the element range from neodymium to platinum with the FRS, Phys. Lett. B 717, 371 (2012)

    ADS  Google Scholar 

  18. J. Erler, N. Birge, M. Kortelainen, W. Nazarewicz, E. Olsen, A. M. Perhac, and M. Stoitsov, The limits of the nuclear landscape, Nature(London) 486, 509 (2012)

    ADS  Google Scholar 

  19. X. W. **a, Y. Lim, P. W. Zhao, H. Z. Liang, X. Y. Qu, Y. Chen, H. Liu, L. F. Zhang, S. Q. Zhang, Y. Kim, and J. Meng, The limits of the nuclear landscape explored by the relativistic continuum Hartree–Bogoliubov theory, Atomic Data and Nuclear Data Tables 121–122, 1 (2018)

    ADS  Google Scholar 

  20. M. Wang, G. Audi, F. G. Kondev, W. J. Huang, S. Naimi, and X. Xu, The AME2016 atomic mass evaluation (II): Tables, graphs and references, Chin. Phys. C 41, 030003 (2017)

    ADS  Google Scholar 

  21. J. Dobaczewski, I. Hamamoto, W. Nazarewicz, and J. A. Sheikh, Nuclear shell structure at particle drip lines, Phys. Rev. Lett. 72, 981 (1994)

    ADS  Google Scholar 

  22. T. Otsuka, R. Fujimoto, Y. Utsuno, B. A. Brown, M. Honma, and T. Mizusaki, Magic numbers in exotic nuclei and spin-isospin properties of the NN Interaction, Phys. Rev. Lett. 87, 082502 (2001)

    ADS  Google Scholar 

  23. L. Satpathy and S. K. Patra, New magic numbers and new islands of stability in drip-line regions in mass model, Nucl. Phys. A 722, C24 (2003)

    ADS  Google Scholar 

  24. D. Steppenbeck, S. Takeuchi, N. Aoi, P. Doornenbal, M. Matsushita, et al., Evidence for a new nuclear “magic number” from the level structure of 54Ca, Nature 502, 207 (2013)

    ADS  Google Scholar 

  25. A. Ozawa, T. Kobayashi, T. Suzuki, K. Yoshida, and I. Tanihata, New magic number, N = 16, near the neutron drip line, Phys. Rev. Lett. 84, 5493 (2000)

    ADS  Google Scholar 

  26. R. Kanungo, A new view of nuclear shells, Phys. Scr. T152, 014002 (2013)

    ADS  Google Scholar 

  27. X. Xu, M. Wang, Y.-H. Zhang, H.-S. Xu, P. Shuai, et al., Direct mass measurements of neutron-rich 86Kr projectile fragments and the persistence of neutron magic number N = 32 in Sc isotopes, Chin. Phys. C 39, 106201 (2015)

    ADS  Google Scholar 

  28. E. M. Burbidge, G. R. Burbidge, W. A. Fowler, and F. Hoyle, Synthesis of the elements in stars, Rev. Mod. Phys. 29, 547 (1957)

    ADS  Google Scholar 

  29. H. Schatz, Nuclear masses in astrophysics, International Journal of Mass Spectrometry 349–350, 181 (2013)

    ADS  Google Scholar 

  30. D. Martin, A. Arcones, W. Nazarewicz, and E. Olsen, Impact of nuclear mass uncertainties on the γ process, Phys. Rev. Lett. 116, 121101 (2016)

    ADS  Google Scholar 

  31. R. Knöbel, M. Diwisch, H. Geissel, Yu. A. Litvinov, Z. Patyk, et al., New results from isochronous mass measurements of neutron-rich uranium fission fragments with the FRS-ESR-facility at GSI, Eur. Phys. J. A 52, 138 (2016)

    ADS  Google Scholar 

  32. K. Blaum, M. Block, R. B. Cakirli, S. Eliseev, M. Kowalska, S. Kreim, Y. A. Litvinov, Sz. Nagy, W. Nortershauser, and D. T. Yordanov, Measurements of groundstate properties for nuclear structure studies by precision mass and laser spectroscopy, J. Phys. Conf. Ser. 312, 092001 (2011)

    Google Scholar 

  33. K. Blaum, J. Dilling, and W. Nortershauser, Precision atomic physics techniques for nuclear physics with radioactive beams, Phys. Scr. T152, 014017 (2013)

    ADS  Google Scholar 

  34. B. Franzke, H. Geissel, and G. Münzenberg, Mass and lifetime measurements of exotic nuclei in storage rings, Mass Spec. Rev. 27, 428 (2008)

    ADS  Google Scholar 

  35. P. Egelhof, Y. Litvinov and M. Steck, Proceedings of the 9th International Conference on Nuclear Physics at Storage Rings STORI’14, Phys. Scr. 2015, 010301 (2015)

    Google Scholar 

  36. H. Geissel, Yu. A. Litvinov, F. Attallah, K. Beckert, P. Beller, et al., New results with stored exotic nuclei at relativistic energies, Nucl. Phys. A 746, 150c (2004)

    ADS  Google Scholar 

  37. Y. H. Zhang, Y. A. Litvinov, T. Uesaka and H. S. Xu, Storage ring mass spectrometry for nuclear structure and astrophysics research, Phys. Scr. 91, 073002 (2016)

    ADS  Google Scholar 

  38. X. Gao, Y. J. Yuan, J. C. Yang, S. Litvinov, M. Wang, Y. Litvinov, W. Zhang, D. Y. Yin, G. D. Shen, W. P. Chai, J. Shi, and P. Shang, Isochronicity corrections for isochronous mass measurements at the HIRFL-CSRe, Nucl. Instr. Meth. in Phys. Res. Sect. A 763, 53 (2014)

    ADS  Google Scholar 

  39. J. W. **a, W. L. Zhan, B. W. Wei, Y. J. Yuan, M. T. Song, et al., The heavy ion cooler-storage-ring project (HIRFL-CSR) at Lanzhou, Nucl. Instr. Meth. in Phys. Res. Sect. A 488, 11 (2002)

    ADS  Google Scholar 

  40. Y. J. Yuan, J. C. Yang, J. W. **a, P. Yuan, W. M. Qiao, et al., Status of the HIRFL–CSR complex, Nucl. Instrum. Methods Phys. Res. B 317, 214 (2013)

    ADS  Google Scholar 

  41. B. Mei, X. L. Tu, M. Wang, H. S. Xu, R. S. Mao, et al., A high performance time-of-flight detector applied to isochronous mass measurement at CSRe, Nucl. Instrum. Meth. A 624, 109 (2010)

    ADS  Google Scholar 

  42. P. Zhang, X. Xu, P. Shuai, R. J. Chen, X. L. Yan, et al., High-precision QEC values of superallowed 0+ → 0+β-emitters 46Cr, 50Fe and 54Ni, Phys. Lett. B 767, 20 (2017)

    ADS  Google Scholar 

  43. M. Hausmann, J. Stadlmann, F. Attallah, K. Beckert, P. Beller, et al., Isochronous mass measurements of hot exotic nuclei, Hyperfine Interactions 132, 291 (2001)

    ADS  Google Scholar 

  44. X. L. Tu, M. Wang, Yu. A. Litvinov, Y. H. Zhang, H. S. Xu, et al., Precision isochronous mass measurements at the storage ring CSRe in Lanzhou, Nucl. Instrum. Methods Phys. Res. A 654, 213 (2011)

    ADS  Google Scholar 

  45. B. -H. Sun, H. Geissel, M. Hausmann, C. Kozhuharov, R. Knöbel, Yu. A. Litvinov, J. Meng, Z. Patyk, T. Radon, and C. Scheidenberger, Identification of time-offlight spectra for isochronous mass measurements, Chin. Phys. C 33, 161 (2009)

    ADS  Google Scholar 

  46. Yu. A. Litvinov, H. Geissel, T. Radon, F. Attallah, G. Audi, et al., Mass measurement of cooled neutron-deficient bismuth projectile fragments with time-resolved Schottky mass spectrometry at the FRSESR facility, Nucl. Phys. A 756 3 (2005)

    ADS  Google Scholar 

  47. B. Sun, R. Knöbel, Yu. A. Litvinov, H. Geissel, J. Meng, et al., Nuclear structure studies of short-lived neutronrich nuclei with the novel large-scale isochronous mass spectrometry at the FRS-ESR facility, Nucl. Phys. A 812 1 (2008)

    ADS  Google Scholar 

  48. A. Kankainen, V.-V. Elomaa, T. Eronen, D. Gorelov, J. Hakala, et al., Mass measurements in the vicinity of the doubly magic waiting point 56Ni, Phys. Rev. C 82 034311 (2010)

    ADS  Google Scholar 

  49. X. L. Tu, Mass measurements of short-lived A = 2Z–1 nuclides at HIRFL-CSR, Ph D Thesis, University of Chinese Academy of Sciences, 2011

    Google Scholar 

  50. Y. H. Zhang, H. S. Xu, Yu. A. Litvinov, X. L. Tu, X. L. Yan, et al., Mass measurements of the neutrondeficient 41Ti, 45Cr, 49Fe, and 53Ni nuclides: First test of the isobaric multiplet mass equation in fp-Shell nuclei, Phys. Rev. Lett. 107, 102501 (2012)

    ADS  Google Scholar 

  51. X. L. Yan, H. S. Xu, Yu. A. Litvinov, Y. H. Zhang, H. Schatz, et al., Mass measurement of 45Cr and its impact on the Ca-Sc cycle in X-ray bursts, Astrophys. J. Letters 766, L8 (2013)

    ADS  Google Scholar 

  52. P. Shuai, H. S. Xu, Y. H. Zhang, Yu. A. Litvinov, M. Wang, et al., Accurate correction of magnetic field instabilities for high-resolution isochronous mass measurements in storage rings, ar**v: 1407.3459 [nucl-ex]

  53. X. Xu, P. Zhang, P. Shuai, R. J. Chen, X. L. Yan, et al., Identification of the lowest T = 2, J π = 0+ isobaric analog state in 52Co and its impact on the understanding of β-decay properties of 52Ni, Phys. Rev. Lett. 117, 182503 (2016)

    ADS  Google Scholar 

  54. Y. M. **ng, K. A. Li, Y. H. Zhang, X. H. Zhou, M. Wang, et al., Mass measurements of neutron-deficient Y, Zr, and Nb isotopes and their impact on rp and νp nucleosynthesis processes, Phys. Lett. B 781, 358 (2018)

    ADS  Google Scholar 

  55. C. Y. Fu, Y. H. Zhang, X. H. Zhou, M. Wang, Yu. A. Litvinov, et al., Masses of the T z = −3/2 nuclei 27P and 29S, Phys. Rev. C 98, 014315 (2018)

    ADS  Google Scholar 

  56. R. J. Chen, X. L. Yan, W. W. Ge, Y. J. Yuan, M. Wang, et al., A method to measure the transition energy γt of the isochronously tuned storage ring, Nucl. Instrum. Meth. A 898, 111 (2018)

    ADS  Google Scholar 

  57. X. Xu, M. Wang, P. Shuai, R. J. Chen, X. L. Yan, et al., A data analysis method for isochronous mass spectrometry usingtwo time-of-flight detectors at CSRe, Chin. Phys. C 39, 106201 (2015)

    ADS  Google Scholar 

  58. P. Shuai, X. Xu, Y. H. Zhang, H. S. Xu, Yu. A. Litvinov, et al., An improvement of isochronous mass spectrometry: Velocity measurements using two time-of-flight detectors, Nucl. Instrum. Methods Phys. Res. B 376, 311 (2016)

    ADS  Google Scholar 

  59. W. Zhang, X. L. Tu, M. Wang, Y. H. Zhang, H. S. Xu, et al., Time-of-flight detectors with improved timing performance for isochronous mass measurements at the CSRe, Nucl. Instrum. Meth. A 756, 1 (2014)

    ADS  Google Scholar 

  60. Y. M. **ng, M. Wang, Y. H. Zhang, P. Shuai, X. Xu, et al., First isochronous mass measurements with two time-of-flight detectors at CSRe, Phys. Scr. 2015, 014010 (2015)

    Google Scholar 

  61. W. R. Phillips, I. Ahmad, D. W. Banes, B. G. Glagola, W. Henning, W. Kutschera, K. E. Rehm, J. P. Schiffer, and T. F. Wang, Charge-state dependence of nuclear lifetimes, Phys. Rev. Lett. 62, 1025 (1989)

    ADS  Google Scholar 

  62. M. Jung, F. Bosch, K. Beckert, H. Eickhoff, H. Folger, et al., First observation of bound-state β-decay, Phys. Rev. Lett. 69, 2164 (1992)

    ADS  Google Scholar 

  63. F. Attallah, M. Aiche, J. F. Chemin, J. N. Scheurer, W. E. Meyerhof, J. P. Grandin, P. Aguer, G. Bogaert, J. Kiener, A. Lefebvre, J. P. Thibaud, and C. Grunberg, Charge state blocking of K-shell internal conversion in 125Te, Phys. Rev. Lett. 75, 1715 (1995)

    ADS  Google Scholar 

  64. H. Irnich, H. Geissel, F. Nolden, K. Beckert, F. Bosch, et al., Half-life measurements of bare, mass-resolved isomers in a storage-cooler ring, Phys. Rev. Lett. 75, 4182 (1995)

    ADS  Google Scholar 

  65. F. Bosch, T. Faestermann, J. Friese, F. Heine, P. Kienle, et al., Observation of bound-state β-decay of fully ionized 187Re: 187Re-187Os cosmochronometry, Phys. Rev. Lett. 77, 5190 (1996)

    ADS  Google Scholar 

  66. T. Ohtsubo, F. Bosch, H. Geissel, L. Maier, C. Scheidenberger, et al., Simultaneous measurement of β-decay to bound and continuum electron states, Phys. Rev. Lett. 95, 052501 (2005)

    ADS  Google Scholar 

  67. Yu. A. Litvinov, F. Bosch, H. Geissel, J. Kurcewicz, Z. Patyk, et al., Measurement of the β + and orbital electron-capture decay rates in fully ionized, hydrogenlike, and heliumlike 140Pr Ions, Phys. Rev. Lett. 99, 262501 (2007)

    ADS  Google Scholar 

  68. Yu. A. Litvinov, F. Bosch, N. Winckler, D. Boutin, H. G. Essel, et al., Observation of non-exponential orbital electron capture decays of hydrogen-like 140Pr and 142Pm ions, Phys. Lett. B 664, 162 (2008)

    ADS  Google Scholar 

  69. P. Kienle (for the Two-Body-Weak-Decays Collaboration), High-resolution measurement of the timemodulated orbital electron capture and of the β + decay of hydrogen-like 142Pm60+ ions, Phys. Lett. B 726, 638 (2013)

    ADS  Google Scholar 

  70. J. N. Bahcall, Beta decay in stellar interiors, Phys. Rev. 126, 1143 (1962)

    ADS  Google Scholar 

  71. Q. Zeng, M. Wang, X. H. Zhou, Y. H. Zhang, X. L. Tu, et al., Half-life measurement of short-lived 94m 44 Ru44+ using isochronous mass spectrometry, Phys. Rev. C 96, 031303 (2017)

    ADS  Google Scholar 

  72. R. J. Chen, Y. J. Yuan, M. Wang, X. Xu, P. Shuai, et al., Simulations of the isochronous mass spectrometry at the HIRFL-CSR, Phys. Scr. 2015, 014044 (2015)

    Google Scholar 

  73. X. C. Chen, Q. Zeng, Yu. A. Litvinov, X. L. Tu, P. M. Walker, M. Wang, Q. Wang, K. Yue, and Y. H. Zhang, Statistical approaches to lifetime measurements with restricted observation times, Phys. Rev. C 96, 034302 (2017)

    ADS  Google Scholar 

  74. X. L. Tu, H. S. Xu, M. Wang, Y. H. Zhang, Yu. A. Litvinov, et al., Direct mass measurements of shortlived A = 2Z–1 nuclides 63Ge, 65As, 67Se, and 71Kr and their impact on nucleosynthesis in the rp process, Phys. Rev. Lett. 106, 112501 (2011)

    ADS  Google Scholar 

  75. P. Shuai, H. S. Xu, X. L. Tu, Y. H. Zhang, B. H. Sun, et al., Charge and frequency resolved isochronous mass spectrometry and the mass of 51Co, Phys. Lett. B 735, 327 (2014)

    ADS  Google Scholar 

  76. E. P. Wigner, On the consequences of the symmetry of the nuclear hamiltonian on the spectroscopy of nuclei, Phys. Rev. 51, 106 (1937)

    ADS  MATH  Google Scholar 

  77. E. P. Wigner, in: Proc. of the R. A. Welch Foundation Conf. on Chemical Research, Houston, edited by W. O. Milligan (R. A. Welch Foundation, Houston, 1957), Vol. 1

  78. S. Weinberg and S. B. Treiman, Electromagnetic Corrections to isotopic spin conservation, Phys. Rev. 116, 465 (1959)

    ADS  Google Scholar 

  79. M. B. Bennett, C. Wrede, B. A. Brown, S. N. Liddick, D. Pérez-Loureiro, et al., Isobaric multiplet mass equation in the A = 31, T = 3/2 quartets, Phys. Rev. C 93, 064310 (2016)

    ADS  Google Scholar 

  80. M. MacCormick and G. Audi, Evaluated experimental isobaric analogue states from T = 1/2 to T = 3 and associated IMME coefficients, Nucl. Phys. A 925, 61 (2014)

    ADS  Google Scholar 

  81. A. T. Gallant, M. Brodeur, C. Andreoiu, A. Bader, A. Chaudhuri, et al., Breakdown of the isobaric multiplet mass equation for the A = 20 and 21 multiplets, Phys. Rev. Lett. 113, 082501 (2014)

    ADS  Google Scholar 

  82. A. Kankainen, L. Canete, T. Eronen, J. Hakala, A. Jokinen, J. Koponen, I. D. Moore, D. Nesterenko, J. Reinikainen, S. Rinta-Antila, A. Voss, and J. Äystö, Mass of astrophysically relevant 31Cl and the breakdown of the isobaric multiplet mass equation, Phys. Rev. C 93, 041304(R) (2016)

    ADS  Google Scholar 

  83. R. Ringle, T. Sun, G. Bollen, D. Davies, M. Facina, J. Huikari, E. Kwan, D. J. Morrissey, A. Prinke, J. Savory, P. Schury, S. Schwarz, and C. S. Sumithrarachchi, Highprecision Penning trap mass measurements of 37,38Ca and their contributions to conserved vector current and isobaric mass multiplet equation, Phys. Rev. C 75, 055503 (2007)

    ADS  Google Scholar 

  84. C. Yazidjian, G. Audi, D. Beck, K. Blaum, S. George, C. Guenaut, F. Herfurth, A. Herlert, A. Kellerbauer, H.-J. Kluge, D. Lunney, and L. Schweikhard, Evidence for a breakdown of the isobaric multiplet mass equation: A study of the A = 35, T = 3/2 isospin quartet, Phys. Rev. C 76, 024308 (2007)

    ADS  Google Scholar 

  85. A. Saastamoinen, T. Eronen, A. Jokinen, V.-V. Elomaa, J. Hakala, A. Kankainen, I. D. Moore, S. Rahaman, J. Rissanen, C. Weber, J. Äystö, and L. Trache, Mass of 23Al for testing the isobaric multiplet mass equation, Phys. Rev. C 80, 044330 (2009)

    ADS  Google Scholar 

  86. A. Kankainen, T. Eronen, D. Gorelov, J. Hakala, A. Jokinen, V. S. Kolhinen, M. Reponen, J. Rissanen, A. Saastamoinen, V. Sonnenschein, and J. Äystö, Highprecision mass measurement of 31S with the double Penning trap JYFLTRAP improves the mass value for 32Cl, Phys. Rev. C 82, 052501(R) (2010)

    ADS  Google Scholar 

  87. J. Su, W. P. Liu, N. T. Zhang, Y. P. Shen, Y. H. Lam, et al., Revalidation of the isobaric multiplet mass equation at A = 53, T = 3/2, Phys. Lett. B 756, 323 (2016)

    ADS  Google Scholar 

  88. C. Dossat, N. Adimi, F. Aksouh, F. Becker, A. Bey, et al., The decay of proton-rich nuclei in the mass A = 36–56 region, Nucl. Phys. A 792, 18 (2007)

    ADS  Google Scholar 

  89. S. E. A. Orrigo, B. Rubio, Y. Fujita, W. Gelletly, J. Agramunt, et al., β decay of the exotic T z =–2 nuclei 48Fe, 52Ni, and 56Zn, Phys. Rev. C 93, 044336 (2016)

    ADS  Google Scholar 

  90. G. Audi, F. G. Kondev, M. Wang, W. J. Huang, and S. Naimi, The NUBASE2016 evaluation of nuclear properties, Chin. Phys. C 41, 030001 (2017)

    ADS  Google Scholar 

  91. M. A. Bentley and S. M. Lenzi, Coulomb energy differences between high-spin states in isobaric multiplets, Prog. Part. Nucl. Phys. 59, 497 (2007)

    ADS  Google Scholar 

  92. W. Benenson and E. Kashy, Isobaric quartets in nuclei, Rev. Mod. Phys. 51, 527 (1979)

    ADS  Google Scholar 

  93. Y. H. Lam, N. A. Smirnova, and E. Caurier, Isospin nonconservation in sd-shell nuclei, Phys. Rev. C 87, 054304 (2013)

    ADS  Google Scholar 

  94. P. Möller and J. R. Nix, Nuclear masses from a unified macroscopic-model, At. Data Nucl. Data Tables 39, 213 (1988)

    ADS  Google Scholar 

  95. M. Goeppert-Mayer, On closed shells in nuclei (II), Phys. Rev. 75, 1969 (1949)

    ADS  Google Scholar 

  96. I. Talmi, The shell model–Successes and limitations, Nucl. Phys. A 507, 295 (1990)

    ADS  Google Scholar 

  97. F. Wienholtz, D. Beck, K. Blaum, Ch. Borgmann, M. Breitenfeldt, et al., Masses of exotic calcium isotopes pin down nuclear forces, Nature 498, 346 (2013)

    ADS  Google Scholar 

  98. F. Sarazin, H. Savajols, W. Mittig, F. Nowacki, N. A. Orr, et al., Shape coexistence and the N = 28 shell closure far from stability, Hyperfine Interactions 132, 147 (2001)

    ADS  Google Scholar 

  99. A. Gade, R. V. F. Janssens, D. Bazin, R. Broda, B. A. Brown, et al., Cross-shell excitation in two-proton knockout: Structure of 52Ca, Phys. Rev. C 74, 021302 (2006)

    ADS  Google Scholar 

  100. R. V. F. Janssens, B. Fornal, P. F. Mantica, B. A. Brown, R. Broda, et al., Structure of 52,54Ti and shell closures in neutron-rich nuclei above 48Ca, Phys. Lett. B 546, 55 (2002)

    ADS  Google Scholar 

  101. J. I. Prisciandaro, P. F. Mantica, B. A. Brown, D. W. Anthony, M. W. Cooper, et al., New evidence for a subshell gap at N = 32, Phys. Lett. B 510, 17 (2001)

    ADS  Google Scholar 

  102. A. T. Gallant, J. C. Bale, T. Brunner, U. Chowdhury, S. Ettenauer, et al., New Precision Mass Measurements of Neutron-Rich Calcium and Potassium Isotopes and Three-Nucleon Forces, Phys. Rev. Lett. 109, 032506 (2012)

    ADS  Google Scholar 

  103. M. Wang, G. Audi, A. Wapstra, F. Kondev, M. Mac-Cormick, X. Xu, and B. Pfeiffer, The AME2012 atomic mass evaluation (II): Tables, graphs and references, Chin. Phys. C 36, 1603 (2012)

    Google Scholar 

  104. P. Möller, J. Nix, W. D. Myers, and W. J. Swiatecki, Nuclear ground-state masses and deformations, At. Data Nucl. Data Tables 59, 185 (1995)

    ADS  Google Scholar 

  105. H. Schatz, A. Aprahamian, J. Görres, M. Wiescher, T. Rauscher, J. F. Rembges, F.-K. Thielemann, B. Pfeiffer, P. Möller, K.-L. Kratz, H. Herndl, B. A. Brown, and H. Rebel, rp-process nucleosynthesis at extreme temperature and density conditions, Phys. Rep. 294, 167 (1998)

    ADS  Google Scholar 

  106. E. Haettner, D. Ackermann, G. Audi, K. Blaum, M. Block, et al., Mass measurements of very neutrondeficient Mo and Tc isotopes and their impact on rp process nucleosynthesis, Phys. Rev. Lett. 106, 122501 (2011)

    ADS  Google Scholar 

  107. H. Schatz, A. Aprahamian, V. Barnard, L. Bildsten, A. Cumming, M. Ouellette, T. Rauscher, F.-K. Thielemann, and M. Wiescher, End Point of the rp Process on Accreting Neutron Stars, Phys. Rev. Lett. 86, 3471 (2001)

    ADS  Google Scholar 

  108. A. A. Valverde, M. Brodeur, G. Bollen, M. Eibach, K. Gulyuz, A. Hamaker, C. Izzo, W.-J. Ong, D. Puentes, M. Redshaw, R. Ringle, R. Sandler, S. Schwarz, C. S. Sumithrarachchi, J. Surbrook, A. C. C. Villari, and I. T. Yandow, High-precision mass measurement of 56Cu and the redirection of the rp-process flow, Phys. Rev. Lett. 120, 032701 (2018)

    ADS  Google Scholar 

  109. J. C. Hardy and I. S. Towner, New limits on fundamental weak-interaction parameters from superallowed β decay, Phys. Rev. Lett. 94, 092502 (2005)

    ADS  Google Scholar 

  110. J. C. Hardy and I. S. Towner, Superallowed 0+ → 0+ nuclear β decays: 2014 critical survey, with precise results for Vud and CKM unitarity, Phys. Rev. C 91, 025501 (2015)

    ADS  Google Scholar 

  111. F. Molina, B. Rubio, Y. Fujita, W. Gelletly, J. Agramunt, et al., T z =–1 → 0 β decays of 54Ni, 50Fe, 46Cr, and 42Ti and comparison with mirror (3He, t) measurements, Phys. Rev. C 91, 014301 (2015)

    ADS  Google Scholar 

  112. I. S. Towner and J. C. Hardy, Theoretical corrections and world data for the superallowed ft values in the β decays of 42Ti, 46Cr, 50Fe, and 54Ni, Phys. Rev. C 92, 055505 (2015)

    ADS  Google Scholar 

  113. M. Wang, H. S. Xu, Y. H. Zhang, X. L. Tu, Yu. A. Litvinov and CSRe collaboration, Mass measurement of short-lived nuclei at HIRFL-CSR, EPJ Web of Conferences 66, 02107 (2014)

    Google Scholar 

  114. J. C. Yang, J. W. **a, G. Q. **ao, H. S. Xu, H. W. Zhao, et al., High Intensity heavy ion Accelerator Facility (HIAF) in China, Nucl. Instrum. Methods Phys. Res. B 317, 263 (2013)

    ADS  Google Scholar 

  115. X. Ma, W. Q. Wen, S. F. Zhang, D. Y. Yu, R. Cheng, et al., HIAF: New opportunities for atomic physics with highly charged heavy ions, Nucl. Instrum. Methods Phys. Res. B 408, 169 (2017)

    ADS  Google Scholar 

  116. Z. J. Wang, Proceedings of LINAC2012, Tel-Aviv, Israel, TUPB039

  117. B. Wu, J. C. Yang, J. W. **a, X. L. Yan, X. J. Hu, et al., HIAF: New opportunities for atomic physics with highly charged heavy ions, Nucl. Instrum. Methods Phys. Res. B 408, 169 (2017)

    ADS  Google Scholar 

  118. Yu. A. Litvinov and F. Bosch, Beta decay of highly charged ions, Rep. Prog. Phys. 74, 016301 (2011)

    ADS  Google Scholar 

  119. T. Stöhlker, Yu. A. Litvinov, and A. Bräuning-Demian, M. Lestinsky, F. Herfurth, R. Maier, D. Prasuhn, R. Schuch, M. Steck, for the SPARC Collaboration, SPARC collaboration: New strategy for storage ring physics at FAIR, Hyperfine Interact 227, 45 (2014)

    ADS  Google Scholar 

  120. P. M. Walker, Yu. A. Litvinov, and H. Geissel, The ILIMA project at FAIR, Int. J. Mass Spectr. 349–350, 247 (2013)

    Google Scholar 

  121. T. Yamaguchia, Y. Yamaguchi, and A. Ozawa, The challenge of precision mass measurements of short-lived exotic nuclei: Development of a new storage ring mass spectrometry, Int. J. Mass Spectr. 349–350, 240 (2013)

    Google Scholar 

  122. M. Grieser, Yu. A. Litvinov, R. Raabe, K. Blaum, Y. Blumenfeld, et al., Storage ring at HIE-ISOLDE, Eur. Phys. J.: Spec. Top. 207, 1 (2012)

    Google Scholar 

Download references

Acknowledgements

This review paper is fully dedicated to celebrating Professor Akito Arima’s 88th birthday. We express our sincere thanks to Prof. Akito Arima for promoting the collaboration between China and Japan in nuclear physics over the past decades, and particularly for his support on building the Cooler Storage Ring in Lanzhou, which is now a leading facility in the world for precision mass measurement of short-lived nuclei. This work was supported in part by the National Key R&D Program of China (Grant Nos. 2016YFA0400504 and 2018YFA0404400), the Key Research Program of Frontier Sciences of CAS (Grant No. QYZDJ-SSW-S), and the Helmholtz-CAS Joint Research Group HCJRG-108.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **ao-Hong Zhou or Meng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, MZ., Zhou, XH., Wang, M. et al. Precision mass measurements of short-lived nuclides at HIRFL-CSR in Lanzhou. Front. Phys. 13, 132112 (2018). https://doi.org/10.1007/s11467-018-0844-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-018-0844-5

Keywords

Navigation