Log in

Mott physics, sign structure, ground state wavefunction, and high-T c superconductivity

  • Review Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

In this article I give a pedagogical illustration of why the essential problem of high-T c superconductivity in the cuprates is about how an antiferromagnetically ordered state can be turned into a short-range state by do**. I will start with half-filling where the antiferromagnetic ground state is accurately described by the Liang-Doucot-Anderson (LDA) wavefunction. Here the effect of the Fermi statistics becomes completely irrelevant due to the no double occupancy constraint. Upon do**, the statistical signs reemerge, albeit much reduced as compared to the original Fermi statistical signs. By precisely incorporating this altered statistical sign structure at finite do**, the LDA ground state can be recast into a short-range antiferromagnetic state. Superconducting phase coherence arises after the spin correlations become short-ranged, and the superconducting phase transition is controlled by spin excitations. I will stress that the pseudogap phenomenon naturally emerges as a crossover between the antiferromagnetic and superconducting phases. As a characteristic of non Fermi liquid, the mutual statistical interaction between the spin and charge degrees of freedom will reach a maximum in a high-temperature “strange metal phase” of the doped Mott insulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. W. Anderson, Science, 1987, 235(4793): 1196

    Article  ADS  Google Scholar 

  2. P. W. Anderson, P. A. Lee, M. Randeria, T. M. Rice, N. Trivedi, and F. C. Zhang, J. Phys.: Condens. Matter, 2004, 16(24): R755, and references therein

    ADS  Google Scholar 

  3. For a review, see: B. Edegger, V. N. Muthukumar, and C. Gros, Adv. Phys., 2007, 56(6): 927

    Article  ADS  Google Scholar 

  4. D. Vaknin, S. K. Sinha, D. E. Moncton, D. C. Johnston, J. M. Newsam, C. R. Safinya, and H. King, Phys. Rev. Lett., 1987, 58(26): 2802

    Article  ADS  Google Scholar 

  5. A. Auerbach, Interacting Electrons and Quantum Magnetism, New York: Springer-Verlag, 1994

    Book  Google Scholar 

  6. For a review, see: P. A. Lee, N. Nagaosa, and X. G. Wen, Rev. Mod. Phys., 2006, 78(1): 17

    Article  ADS  Google Scholar 

  7. Z. Y. Weng, New J. Phys., 2011, 13: 103039; ar**v: 1105.3027, 2011, and references therein

    Article  ADS  Google Scholar 

  8. S. Liang, B. Doucot, and P. W. Anderson, Phys. Rev. Lett., 1988, 61(3): 365

    Article  ADS  Google Scholar 

  9. W. Marshall, Proc. R. Soc. Lond. A, 1955, 232(1188): 48

    Article  ADS  Google Scholar 

  10. For a review, see: Z. Y. Weng, Int. J. Mod. Phys. B, 2007, 21: 773; ar**v:0704.2875, 2007

    Article  ADS  Google Scholar 

  11. J. Zaanen and B. J. Overbosch, Phil. Trans. R. Soc. A, 2011, 369: 1599; ar**v:0911.4070, 2009

    Article  ADS  Google Scholar 

  12. D. N. Sheng, Y. C. Chen, and Z. Y. Weng, Phys. Rev. Lett., 1996, 77(25): 5102

    Article  ADS  Google Scholar 

  13. Z. Y. Weng, D. N. Sheng, Y.-C. Chen, and C. S. Ting, Phys. Rev. B, 1997, 55(6): 3894

    Article  ADS  Google Scholar 

  14. K. Wu, Z. Y. Weng, and J. Zaanen, Phys. Rev. B, 2008, 77(15): 155102

    Article  ADS  Google Scholar 

  15. J. W. Mei and Z. Y. Weng, Phys. Rev. B, 2010, 81(1): 014507

    Article  ADS  Google Scholar 

  16. Y. J. Uemura, J. Phys.: Condens. Matter, 2004, 16(40): S4515

    ADS  Google Scholar 

  17. Y. J. Uemura, Physica B, 2006, 374–375: 1

    Article  ADS  Google Scholar 

  18. T. Timusk and B. Statt, Rep. Prog. Phys., 1999, 62(1): 61

    Article  ADS  Google Scholar 

  19. A. Damascelli, Z. Hussin, and Z. X. Shen, Rev. Mod. Phys., 2003, 75(2): 473

    Article  ADS  Google Scholar 

  20. Z. Y. Weng and V. N. Muthukumar, Phys. Rev. B, 2002, 66(9): 094509

    Article  ADS  Google Scholar 

  21. Z. Y. Weng and X. L. Qi, Phys. Rev. B, 2006, 74(14): 144518

    Article  ADS  Google Scholar 

  22. Z. A. Xu, N. P. Ong, Y. Wang, T. Kakeshita, and S. Uchida, Nature, 2000, 406(6795): 486

    Article  ADS  Google Scholar 

  23. Y. Wang, Z. A. Xu, T. Kakheshita, S. Uchida, S. Ono, Y. Ando, and N. Ong, Phys. Rev. B, 2001, 64(22): 224519

    Article  ADS  Google Scholar 

  24. P. Ye, C. S. Tian, X. L. Qi, and Z. Y. Weng, Phys. Rev. Lett., 2011, 106(14): 147002

    Article  ADS  Google Scholar 

  25. P. Ye, C. S. Tian, X. L. Qi, and Z. Y. Weng, Nucl. Phys. B, 2012, 854[FS]: 815; ar**v:1106.1223, 2011

    Article  ADS  Google Scholar 

  26. S. P. Kou, X. L. Qi, and Z. Y. Weng, Phys. Rev. B, 2005, 71(23): 235102

    Article  ADS  Google Scholar 

  27. V. J. Emery and S. A. Kivelson, Nature, 1995, 374(6521): 434

    Article  ADS  Google Scholar 

  28. Z. Tešanović, Nat. Phys., 2008, 4: 408

    Article  Google Scholar 

  29. J. W. Mei, S. Kawasaki, G. Q. Zheng, Z. Y. Weng, and X. G. Wen, ar**v:1109.0406, 2011

  30. T. C. Ribeiro and X. G. Wen, Phys. Rev. B, 2006, 74(15): 155113

    Article  ADS  Google Scholar 

  31. T. C. Ribeiro and X. G. Wen, Phys. Rev. Lett., 2005, 95(5): 057001

    Article  ADS  Google Scholar 

  32. Y. Qi and S. Sachdev, Phys. Rev. B, 2010, 81(11): 115129

    Article  ADS  Google Scholar 

  33. Z. C. Gu and Z. Y. Weng, Phys. Rev. B, 2007, 76(2): 024501

    Article  ADS  Google Scholar 

  34. F. C. Zhang, C. Gros, T. M. Rice, and H. Shiba, Supercond. Sci. Technol., 1988, 1(1): 36

    Article  ADS  Google Scholar 

  35. G. Baskaran, Z. Zou, and P. W. Anderson, Solid State Commun., 1987, 63(11): 973

    Article  ADS  Google Scholar 

  36. P. W. Anderson, ar**v:1011.2736, 2010

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Yu Weng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weng, ZY. Mott physics, sign structure, ground state wavefunction, and high-T c superconductivity. Front. Phys. 6, 370–378 (2011). https://doi.org/10.1007/s11467-011-0220-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-011-0220-1

Keywords

Navigation