Log in

Linear independence of a finite set of time-frequency shifts

  • Survey Article
  • Published:
Frontiers of Mathematics in China Aims and scope Submit manuscript

Abstract

This paper introduces an open conjecture in time-frequency analysis on the linear independence of a finite set of time-frequency shifts of a given L2 function. Firstly, background and motivation for the conjecture are provided. Secondly, the main progress of this linear independence in the past twenty five years is reviewed. Finally, the partial results of the high dimensional case and other cases for the conjecture are briefly presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antezana J, Bruna J, Pujals E. Linear independence of time frequency translates in Lp spaces. J Fourier Anal Appl, 2020, 26(4): 63 (15 pp)

    Article  MATH  Google Scholar 

  2. Balan R. The noncommutative Wiener lemma, linear independence, and spectral properties of the algebra of time-frequency shift operators. Trans Ams Math Soc, 2008, 360(7): 3921–3941

    Article  MathSciNet  MATH  Google Scholar 

  3. Balan R, Krishtal I. An almost periodic noncommutative Wiener’s lemma. J Math Anal Appl, 2010, 370(2): 339–349

    Article  MathSciNet  MATH  Google Scholar 

  4. Benedetto J J, Bourouihiya A. Linear independence of finite Gabor systems determined by behavior at infinity. J Geom Anal, 2015, 25(1): 226–254

    Article  MathSciNet  MATH  Google Scholar 

  5. Bownik M, Speegle D. Linear independence of Parseval wavelets. Illinois J Math, 2010, 54(2): 771–785

    Article  MathSciNet  MATH  Google Scholar 

  6. Bownik M, Speegle D. Linear independence of time-frequency translates of functions with faster than exponential decay. Bull Lond Math Soc, 2013, 45(3): 554–556

    Article  MathSciNet  MATH  Google Scholar 

  7. Bownik M, Speegle D. Linear independence of time-frequency translates in Rd. J Geom Anal, 2016, 26(3): 1678–1692

    Article  MathSciNet  MATH  Google Scholar 

  8. Christensen O. An Introduction to Frames and Riesz Bases. 2nd Ed, Applied and Numerical Harmonic Analysis, MA: Birkhäuser, 2016.

    MATH  Google Scholar 

  9. Christensen O, Hasannasab M. Gabor frames in l2(Z) and linear dependence. J Fourier Anal Appl, 2019, 25(1): 101–107

    Article  MathSciNet  MATH  Google Scholar 

  10. Christensen O, Lindner A M. Lower bounds for finite wavelet and Gabor systems. Approx Theory Appl (N S), 2001, 17(1): 18–29

    MathSciNet  MATH  Google Scholar 

  11. Currey B, Oussa V. HRT conjecture and linear independence of translates on the Heisenberg group. 2018

    MATH  Google Scholar 

  12. Daubechies I, Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in Applied Mathematics, Vol 61. Philadelphia, PA: SIAM, 1992.

    Book  MATH  Google Scholar 

  13. Demeter C. Linear independence of time-frequency translates for special configurations. Math Res Lett, 2010, 17(4): 761–779

    Article  MathSciNet  MATH  Google Scholar 

  14. Demeter C, Gautam S Z. On the finite linear independence of lattice Gabor systems. Proc Am Math Soc, 2013, 141(5): 1735–1747

    Article  MathSciNet  MATH  Google Scholar 

  15. Demeter C, Zaharescu A. Proof of the HRT conjecture for (2, 2) configurations. J Math Anal Appl, 2012, 388(1): 151–159

    Article  MathSciNet  MATH  Google Scholar 

  16. Gröchenig K. Linear independence of time-frequency shifts? Monatsh Math, 2015, 177(1): 67–77

    Article  MathSciNet  MATH  Google Scholar 

  17. Heil C. Linear independence of finite Gabor systems. In: Harmonic Analysis and Applications, Appl Numer Harmon Anal, Boston, MA: Birkhäuser Boston, 2006, 171–206

    Chapter  Google Scholar 

  18. Heil C, Ramanathan J, Topiwala P. Linear independence of time-frequency translates. Proc Amer Math Soc, 1996, 124(9): 2787–2795

    Article  MathSciNet  MATH  Google Scholar 

  19. Heil C, Speegle D. The HRT conjecture and the Zero Divisor Conjecture for the Heisenberg group. In: Excursions in Harmonic Analysis, Appl and Numer Harmon Anal, Vol 3. Cham: Birkhäuser, 2015, 159–176

    Chapter  Google Scholar 

  20. Jitomirskaya S Y. Metal-insulator transition for the almost Mathieu operator. Ann Math(2), 1999, 150(3): 1159–1175

    Article  MathSciNet  MATH  Google Scholar 

  21. Kreisel M. Linear independence of time frequency shifts up to extreme dilations. J Fourier Anal Appl, 2019, 25(6): 3214–3219

    Article  MathSciNet  MATH  Google Scholar 

  22. Kutyniok G. Linear independence of time-frequency shifts under a generalized Schrödinger representation. Arch Math (Basel), 2002, 78(2): 135–144

    Article  MathSciNet  MATH  Google Scholar 

  23. Lawrence J, Pfander G E, Walnut D. Linear independence of Gabor systems in finite dimensional vector spaces. J Fourier Anal Appl, 2005, 11(6): 715–726

    Article  MathSciNet  MATH  Google Scholar 

  24. Li D F. Mathematical Theory of Wavelet Analysis. Bei**g: Science Press, 2017(in Chinese)

    Google Scholar 

  25. Linnell P A. Von Neumann algebras and linear independence of translates. Proc Amer Math Soc, 1999, 127(11): 3269–3277

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu W C. Letter to the Editor: Proof of the HRT conjecture for almost every (1, 3) configuration. J Fourier Anal Appl, 2019, 25(4): 1350–1360

    Article  MathSciNet  MATH  Google Scholar 

  27. Nicola F, Trapasso S I. A note on the HRT conjecture and a new uncertainty principle for the short-time Fourier transform. J Fourier Anal Appl, 2020, 26(4): 68 (7 pp)

    Article  MathSciNet  MATH  Google Scholar 

  28. Okoudjou K A. Extension and restriction principles for the HRT conjecture. J Fourier Anal Appl, 2019, 25(4): 1874–1901

    Article  MathSciNet  MATH  Google Scholar 

  29. Oussa V. New insights into the HRT conjecture. 2019

    Google Scholar 

  30. Rosenblatt J M. Linear independence of translations. J Aust Math Soc Ser A, 1995, 59(1): 131–133

    Article  MathSciNet  MATH  Google Scholar 

  31. Rosenblatt J. Linear independence of translations. Int J Pure Appl Math, 2008, 45(2): 463–473

    MathSciNet  MATH  Google Scholar 

  32. Saliani S. l2-linear independence for the system of integer translates of a square integrable function. Proc Amer Math Soc, 2013, 141(3): 937–941

    Article  MathSciNet  MATH  Google Scholar 

  33. Saliani S. l2-linear independence for the system of integer translates. J Fourier Anal, 2014, 20(4): 766–783

    Article  MathSciNet  Google Scholar 

  34. Stroock D W. Remarks on the HRT conjecture. In: Memoriam Marc Yor-Sćéminar on Probabilités Theory XLVII, Lecture Notes in Math, Vol 2137. Cham: Springer, 2015, 603–617

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Grant No. 61471410) and the Construction Fund for Subject Innovation Term of Wuhan Textile University (No. 201401023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dengfeng Li.

Additional information

Translated from Advances in Mathematics (China), 2022, 51(3):400–406

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D. Linear independence of a finite set of time-frequency shifts. Front. Math. China 17, 501–509 (2022). https://doi.org/10.1007/s11464-022-1024-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-022-1024-z

Keywords

MSC2020

Navigation