Log in

A survey on book-embedding of planar graphs

  • Survey Article
  • Published:
Frontiers of Mathematics in China Aims and scope Submit manuscript

Abstract

The book-embedding problem arises in several area, such as very large scale integration (VLSI) design and routing multilayer printed circuit boards (PCBs). It can be used into various practical application fields. A book embedding of a graph G is an embedding of its vertices along the spine of a book, and an embedding of its edges to the pages such that edges embedded on the same page do not intersect. The minimum number of pages in which a graph G can be embedded is called the pagenumber or book-thickness of the graph G. It is an important measure of the quality for book-embedding. It is NP-hard to research the pagenumber of book-embedding for a graph G. This paper summarizes the studies on the book-embedding of planar graphs in recent years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alam M J, Brandenburg F J, Kobourov S G. On the book thickness of 1-planar graphs. 2015, ar**v: 1510.05891

  2. Alam M J, Brandenburg F J, Kobourov S G. Straight-line grid drawings of 3-connected 1-planar graphs. In: Graph Drawing, Lecture Notes in Comput. Sci., Vol. 8242, Cham: Springer, 2013, 83–94

    Chapter  Google Scholar 

  3. Alam M J, Bekos M A, Gronemann M, Kaufmann M, Pupyrev S. On dispersable book embeddings. Graph-theoretic Concepts in Computer Science (44th International Workshop, WG 2018, Cottbus, Germany), A. Brandestadt, E. Kohler, K. Meer, Eds., LNCS 11159 (2018) 1–14, Springer, Cham, Switzerland

  4. Alam M J, Bekos M A, Gronemann M, Kaufmann M, Pupyrev S. On dispersable book embeddings. Theoret. Comput. Sci., 2021, 861: 1–22

    Article  MathSciNet  MATH  Google Scholar 

  5. Alhashem M, Jourdan G V, Zaguia N. On the book embedding of ordered sets. Ars Combin., 2015, 119: 47–64

    MathSciNet  MATH  Google Scholar 

  6. Angelini P, Da Lozzo G, Neuwirth D. Advancements on SEFE and partitioned book embedding problems. Theoret. Comput. Sci., 2015, 575: 71–89

    Article  MathSciNet  MATH  Google Scholar 

  7. Atneosen G A. On the Embeddability of Compacta in N-books: Intrinsic and Extrinsic Properties. Ph.D. Thesis, East Lansing, MI: Michigan State University, 1968

    Google Scholar 

  8. Balogh J, Salazar G. Book embeddings of regular graphs. SIAM J. Discrete Math., 2015, 29(2): 811–822

    Article  MathSciNet  MATH  Google Scholar 

  9. Bekos M A, Bruckdorfer T, Kaufmann M, Raftopoulou C. 1-planar graphs have constant book thickness. In: Algorithms—ESA 2015, Lecture Notes in Comput. Sci., Vol. 9294, Heidelberg: Springer, 2015, 130–141

    Chapter  Google Scholar 

  10. Bekos M A, Gronemann M, Raftopoulou C N. Two-page book embeddings of 4-planar graphs. Algorithmica, 2016, 75(1): 158–185

    Article  MathSciNet  MATH  Google Scholar 

  11. Bekos M A, Kaufmann M, Zielke C. The book embedding problem from a SAT-solving perspective. In: Graph Drawing and Network Visualization, Lecture Notes in Comput. Sci., Vol. 9411, Cham: Springer, 2015, 125–138

    Chapter  Google Scholar 

  12. Bernhart F, Kainen P C. The book thickness of a graph. J. Combin. Theory Ser. B, 1979, 27(3): 320–331

    Article  MathSciNet  MATH  Google Scholar 

  13. Bilski T. Optimum embedding of complete graphs in books. Discrete Math., 1998, 182(1/2/3): 21–28

    Article  MathSciNet  MATH  Google Scholar 

  14. Buss J F, Shor P W. On the pagenumber of planar graphs. In: Proceedings of the 16th Annual ACM Symposium on Theory of Computing (STOC’ 84), New York, NY: ACM, 1984, 98–100

    Google Scholar 

  15. Chen C. Any maximal planar graph with only one separating triangle is hamiltonian. J. Comb. Opim., 2003, 7(1): 79–86

    Article  MathSciNet  MATH  Google Scholar 

  16. Chiba N, Nishizeki T. The hamiltonian cycle problem is linear-time solvable for 4-connected planar graphs. J. Algorithms, 1989, 10(2): 187–211

    Article  MathSciNet  MATH  Google Scholar 

  17. Chung F R K, Leighton F T, Rosenberg A L. Embedding graphs in books: a layout problem with applications to VLSI design. SIAM J. Algebraic Discrete Methods, 1987, 8(1): 33–58

    Article  MathSciNet  MATH  Google Scholar 

  18. Dujmović V, Wood D R. Graph treewidth and geometric thickness parameters. Discrete Comput. Geom., 2007, 37(4): 641–670

    Article  MathSciNet  MATH  Google Scholar 

  19. Endo T. The pagenumber of toroidal graphs is at most seven. Discrete Math., 1997, 175(1/2/3): 87–96

    Article  MathSciNet  MATH  Google Scholar 

  20. Enomoto H, Miyauchi M S. Embedding graphs into a three page book with O(M log N) crossings of edges over the spine. SIAM J. Discrete Math., 1999, 12(3): 337–341

    Article  MathSciNet  MATH  Google Scholar 

  21. Enomoto H, Miyauchi M S, Ota K. Lower bounds for the number of edge-crossings over the spine in a topological book embedding of a graph. Discrete Appl. Math., 1999, 92(2/3): 149–155

    Article  MathSciNet  MATH  Google Scholar 

  22. Enomoto H, Nakamigawa T, Ota K. On the pagenumber of complete bipartite graphs. J. Combin. Theory Ser. B, 1997, 71(1): 111–120

    Article  MathSciNet  MATH  Google Scholar 

  23. Even S, Itai A. Queues, stacks, and graphs. In: Theory of Machines and Computations (Proc. Internat. Sympos., Technion, Haifa, 1971), New York: Academic Press, 1971, 71–86

    Chapter  Google Scholar 

  24. Ewald G. Hamiltonian circuits in simplicial complexes. Geometriae Dedicata, 1973, 2: 115–125

    Article  MathSciNet  MATH  Google Scholar 

  25. Fang J F, Lai K C. Embedding the incomplete hypercube in books. Inform. Process. Lett., 2005, 96(1): 1–6

    Article  MathSciNet  MATH  Google Scholar 

  26. Games R A. Optimal book embeddings of the FFT, benes, and barrel shifter networks. Algorithmica, 1986, 1(1): 233–250

    Article  MathSciNet  MATH  Google Scholar 

  27. Ganley J L, Heath L S. The pagenumber of k-trees is O(k). Discrete Appl. Math., 2001, 109(3): 215–221

    Article  MathSciNet  MATH  Google Scholar 

  28. Garey M R, Johnson D S, Miller G L, Papadimitriou C H. The complexity of coloring circular arcs and chords. SIAM J. Algebraic Discrete Methods, 1980, 1(2): 216–227

    Article  MathSciNet  MATH  Google Scholar 

  29. Grigoriev A, Bodlaender H L. Algorithms for graphs embeddable with few crossings per edge. Algorithmica, 2007, 49(1): 1–11

    Article  MathSciNet  MATH  Google Scholar 

  30. Guan X X. Book-embedding of Planar Graphs, Master Thesis, Taiyuan: Taiyuan University of Technology, 2019 (in Chinese)

    Google Scholar 

  31. Guan X X, Yang W H. Embedding planar 5-graphs in three pages. Discrete Appl. Math., 2019, 282: 108–121

    Article  MathSciNet  MATH  Google Scholar 

  32. Hasunuma T, Shibata Y. Embedding de Bruijn, Kautz and shuffle-exchange networks in books. Discrete Appl. Math., 1997, 78(1/2/3): 103–116

    Article  MathSciNet  MATH  Google Scholar 

  33. Heath L S. Embedding planar graphs in seven pages. In: 25th Annual Symposium on Foundations of Computer Science, New York: IEEE, 1984, 74–89

    Google Scholar 

  34. Heath L S. Algorithms for Embedding Graphs in Books. Ph.D. Thesis, Chapel Hill, NC: University of North Carolina, 1985

    Google Scholar 

  35. Heath L S, Istrail S. The pagenumber of genus g graphs is O(g). J. Assoc. Comput. Mach., 1992, 39(3): 479–501

    Article  MathSciNet  MATH  Google Scholar 

  36. Helden G. Each maximal planar graph with exactly two separating triangles is hamiltonian. Discret. Appl. Mach., 2007, 155(14): 1833–1836

    Article  MathSciNet  MATH  Google Scholar 

  37. Hoffmann M, Klemz B. Triconnected planar graphs of maximum degree five are subhamiltonian. In: 27th Annual European Symposium on Algorithms (ESA 2019) (Bender, M.A., Svensson, O. and Herman, G. eds.), Leibniz International Proceedings in Informatics (LIPIcs), Vol. 144, Dagstuhl: Schloss Dagstuhl—Leibniz-Zentrum für Informatik, 2019, Article 58, 14 pp

    Google Scholar 

  38. Hwang F K. A survey on multi-loop networks. Theoret. Comput. Sci., 2003, 299(1/2/3): 107–121

    Article  MathSciNet  MATH  Google Scholar 

  39. Istrail S. An algorithm for embedding planar graphs in six pages. An. Ştiinţ. Univ. Al. I. Cuza Iaşi Secţ. I a Mat., 1988, 34(4): 329–341

    MathSciNet  MATH  Google Scholar 

  40. Joslin S S, Kainen P C, Overbay S. On dispersability of some cycle products. Missouri J. Math. Sci., in press, 2021

  41. Kainen P C. Some recent results in topological graph theory. In: Graphs and Combinatorics. Lecture Notes in Math., Vol. 406, Berlin: Springer, 1974, 76–108

    Chapter  Google Scholar 

  42. Kainen P C. Complexity of products of even cycles. Bull. Inst. Combinatorics and Its Applications, 2011, 62: 95–102

    MathSciNet  MATH  Google Scholar 

  43. Kainen P C, Overbay S. Extension of a theorem of Whitney. Appl. Math. Lett., 2007, 20: 835–837

    Article  MathSciNet  MATH  Google Scholar 

  44. Kainen P C, Overbay S. Cubic planar bipartite graphs are dispersable. ar**v: 2107.4728v1

  45. Kainen P C, Overbay S. On matching book thickness. in preparation

  46. Kapoor N, Russell M, Stojmenovic I, Zomaya A Y. A genetic algorithm for finding the pagenumber of interconnection networks. J. Parallel Distrib. Comput., 2002, 62(2): 267–283

    Article  MATH  Google Scholar 

  47. Kobourov S G, Liotta G, Montecchiani F. An annotated bibliography on 1-planarity. Computer Science Review 25, 2017, 49–67

    Article  MathSciNet  MATH  Google Scholar 

  48. Konoe M, Hagiwara K, Tokura N. On the pagenumber of hypercubes and cube-connected cycles. IEICE Trans., 1988, J71-D(3): 490–500 (in Japanese)

    Google Scholar 

  49. Korzhik V P, Mohar B. Minimal obstructions for 1-immersions and hardness of 1-planarity testing. J. Graph Theory, 2013, 72(1): 30–71

    Article  MathSciNet  MATH  Google Scholar 

  50. Kwiatkowska A B. On page number of N-free posets. In: Fifth Cracow Conference on Graph Theory USTRON’ 06, Electron. Notes Discrete Math., Vol. 24, Amsterdam: Elsevier Sci. B. V., 2006, 243–249

    Google Scholar 

  51. Li X L. Book Embedding of Graphs. Ph.D. Thesis, Zhengzhou: Zhengzhou University, 2002 (in Chinese)

    Google Scholar 

  52. Malitz S M. Graphs with E edges have pagenumber \(O(\sqrt E )\). J. Algorithms, 1994, 17(1): 71–84

    Article  MathSciNet  MATH  Google Scholar 

  53. Malitz S M. Genus g graphs have pagenumber \(O(\sqrt g )\). J. Algorithms, 1994, 17: 85–109

    Article  MathSciNet  MATH  Google Scholar 

  54. Mitchel S L. Linear algorithms to recognize outerplanar and maximal outerplanar graphs. Inform. Process. Lett., 1979, 9(5): 224–232

    Article  MathSciNet  Google Scholar 

  55. Moran S, Wolfstahl Y. One-page book embedding under vertex-neighborhood constraints. SIAM J. Discrete Math., 1990, 3(3): 376–390

    Article  MathSciNet  MATH  Google Scholar 

  56. Muder D J, Weaver M L, West D B. Pagenumber of complete bipartite graphs. J. Graph Theory, 1988, 12(4): 469–489

    Article  MathSciNet  MATH  Google Scholar 

  57. Nakamoto A, Nozawa T. Book embedding of locally planar graphs on orientable surfaces. Discrete Math., 2016, 339(11): 2672–2679

    Article  MathSciNet  MATH  Google Scholar 

  58. Nakamoto A, Ozeki K. Book embedding of toroidal bipartite graphs. SIAM J. Discrete Math., 2012, 26(2): 661–669

    Article  MathSciNet  MATH  Google Scholar 

  59. Nowakowski R, Parker A. Ordered sets, pagenumbers and planarity. Order, 1989, 6(3): 209–218

    Article  MathSciNet  MATH  Google Scholar 

  60. Ollmann L T. On the book thicknesses of various graphs. In: Proceedings of the 4th Southeastern Conference on Combinatorics. Graph Theory and Computing, Congressus Numerantium, Vol. VIII, Winnipeg, Man.: Utilitas Mathematica Publishing Inc., 1973, 459

    Google Scholar 

  61. Overbay S. Generalized Book Embeddings. Ph. D. Dissertation, Colorado State University, Fort Collins, CO, 1998

    Google Scholar 

  62. Pach J, Tóth G. Graphs drawn with few crossings per edge. Combinatorica, 1997, 17(3): 427–439

    Article  MathSciNet  MATH  Google Scholar 

  63. Pupyrev S. Private communication. http://be.cs.arizona.edu/static/img/deg7_non_hamiltonian.png

  64. Pupyrev S. Book Embeddings of Graph Products. ar**v: 2007.15102v1

  65. Ringel G. Map Color Theorem. Die Grundlehren der mathematischen Wissenschaften, Band 209, New York: Springer-Verlag, 1974

    Book  MATH  Google Scholar 

  66. Rosenberg A L. The Diogenes approach to testable fault-tolerant arrays of processors. IEEE Trans. Comput., 1983, 32(10): 902–910

    Article  Google Scholar 

  67. Sanders D P. The Diogenes approach to testable fault-tolerant arrays of processors. J. Graph Theory., 1997, 24(4): 341–345

    Article  MathSciNet  Google Scholar 

  68. Shahrokhi F, Shi W P. On crossing sets, disjoint sets, and pagenumber. J. Algorithm, 2000, 34(1): 40–53

    Article  MathSciNet  MATH  Google Scholar 

  69. Shao Z, Liu Y, Li Z. Matching book embedding of the Cartesian product of a complete graph and a cycle. ar**v: 2002.00309v1

  70. Shao Z, Liu Y, Li Z. Matching book thickness of Halin graphs. ar**v: 2008.13331v1

  71. So H C. Some theoretical results on the routing of multilayer printed wiring boards. In: Proc. IEEE Symp. on Circuits and Systems, New York: IEEE, 1974, 296–303

    Google Scholar 

  72. Sperfeld K. On the page number of complete odd-partite graphs. Discrete Math., 2013, 313(17): 1689–1696

    Article  MathSciNet  MATH  Google Scholar 

  73. Swaminathan R P, Giraraj D, Bhatia D K. The pagenumber of the class of bandwidth-k graphs is k − 1. Inform. Process. Lett., 1995, 55(2): 71–74

    Article  MathSciNet  MATH  Google Scholar 

  74. Sysło M M. Characterizations of outerplanar graphs. Discrete Math., 1979, 26(1): 47–53

    Article  MathSciNet  MATH  Google Scholar 

  75. Tanaka Y, Shibata Y. On the pagenumber of trivalent Cayley graphs. Discrete Appl. Math., 2006, 154(8): 1279–1292

    Article  MathSciNet  MATH  Google Scholar 

  76. Tarjan R. Sorting using networks of queues and stacks. J. Assoc. Comput. Mach., 1972, 19: 341–346

    Article  MathSciNet  MATH  Google Scholar 

  77. Thomassen C. Rectilinear drawings of graphs. J. Graph Theory, 1988, 12(3): 335–341

    Article  MathSciNet  MATH  Google Scholar 

  78. Thompson C D. A Complexity Theory for VLSI. Ph.D. Thesis, Pittsburgh, PA: Carnegie Mellon University, 1980

    Google Scholar 

  79. Tutte W T. A theorem on planar graphs. Trans. Amer. Math. Soc., 1956, 82: 99–116

    Article  MathSciNet  MATH  Google Scholar 

  80. Wang M. Some results for embedding grid graphs in books. J. Zhengzhou Univ. (Nat. Sci. Ed.), 1997, 29(2): 31–34} (in Chinese)

    MathSciNet  MATH  Google Scholar 

  81. Whitney H. A theorem on graphs. Ann. Math. 1931, 32: 378–390

    Article  MathSciNet  MATH  Google Scholar 

  82. Wigderson A. The complexity of the Hamiltonian circuit problem for maximal planar graphs. Technical Report 298, Department of EECS, Princeton University, February (1982)

  83. Wood D R. Degree constrained book embeddings. J. Algorithms, 2002, 45(2): 144–154

    Article  MathSciNet  MATH  Google Scholar 

  84. Yang W H, Meng J X. Embedding connected double-loop networks with even cardinality in books. Appl. Math. Lett., 2009, 22(9): 1458–1461

    Article  MathSciNet  MATH  Google Scholar 

  85. Yannakakis M. Four pages are necessary and sufficient for planar graphs. In: Proceedings of the 18th Annual ACM Symposium on Theory of Computing (STOC’ 86), New York, NY: ACM, 1986, 104–108

    Google Scholar 

  86. Yannakakis M. Embedding planar graphs in four pages. J. Comput. System Sci., 1989, 38(1): 36–67

    Article  MathSciNet  MATH  Google Scholar 

  87. Yannakakis M. Planar Graphs that Need Four Pages. J. Combin. Theory Ser. B, 2020, 145: 241–263

    Article  MathSciNet  MATH  Google Scholar 

  88. Zhang Y M, Chen G L. The results of embedding several graphs in books. Chinese J. Computer, 1993, 16(7): 509–518 (in Chinese)

    Google Scholar 

  89. Zhao B. The Book Embedding of Some Graphs. Ph.D. Thesis, Urumqi: **njiang University, 2016 (in Chinese)

    Google Scholar 

  90. Zhao B, Chen L H, Zhang Y P, Tian Y Z, Meng J X. On the page number of triple-loop networks with even cardinality. Ars Combin., 2016, 124: 257–266

    MathSciNet  MATH  Google Scholar 

  91. Zhao B, Meng J X. Embedding connected double-loop networks with odd cardinality in books. J. **njiang Univ. (Nat. Sci. Ed.), 2011, 28(2): 152–155

    MATH  Google Scholar 

  92. Zhao B, Tian Y Z, Meng J X. Embedding semistrong product of paths and cycles in books. J. Nat. Sci. Hunan Norm. Univ., 2015, 38(6): 73–77

    MathSciNet  MATH  Google Scholar 

  93. Zhao B, Tian Y Z, Meng J X. On the page number of lexicographic product of paths and cycles in books. J. **njiang Univ. (Nat. Sci. Ed.), 2016, 33(1): 1–5

    MathSciNet  MATH  Google Scholar 

  94. Zhao B, **ong W, Tian Y Z, Meng J X. Embedding generalized Petersen graph in books. Chin. Ann. Math. Ser. B, 2016, 37(3): 385–394

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **axia Guan.

Additional information

Translated from Advances in Mathematics (China), 2020, 49(1): 1–12

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, X., Wu, C., Yang, W. et al. A survey on book-embedding of planar graphs. Front. Math. China 17, 255–273 (2022). https://doi.org/10.1007/s11464-022-1010-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-022-1010-5

Keywords

MSC2020

Navigation