Log in

Pseudo-orthogonality for graph 1-Laplacian eigenvectors and applications to higher Cheeger constants and data clustering

  • Research Article
  • Published:
Frontiers of Mathematics in China Aims and scope Submit manuscript

Abstract

The data clustering problem consists in dividing a data set into prescribed groups of homogeneous data. This is an NP-hard problem that can be relaxed in the spectral graph theory, where the optimal cuts of a graph are related to the eigenvalues of graph 1-Laplacian. In this paper, we first give new notations to describe the paths, among critical eigenvectors of the graph 1-Laplacian, realizing sets with prescribed genus. We introduce the pseudo-orthogonality to characterize m3(G), a special eigenvalue for the graph 1-Laplacian. Furthermore, we use it to give an upper bound for the third graph Cheeger constant h3(G), that is, h3(G) ⩽ m3(G). This is a first step for proving that the k-th Cheeger constant is the minimum of the 1-Laplacian Raylegh quotient among vectors that are pseudo-orthogonal to the vectors realizing the previous k − 1 Cheeger constants. Eventually, we apply these results to give a method and a numerical algorithm to compute m3 (G), based on a generalized inverse power method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amghibech S. Eigenvalues of the discrete p-Laplacian for graphs. Ars Combin, 2003, 67: 283–302

    MathSciNet  MATH  Google Scholar 

  2. Belloni M, Ferone V, Kawohl B. Isoperimetric inequalities, Wulff shape and related questions for strongly nonlinear elliptic operators. Special issue dedicated to Lawrence E. Payne. Z Angew Math Phys, 2003, 54(5): 771–783

    Article  MathSciNet  MATH  Google Scholar 

  3. Belloni M, Kawohl B, Juutinen P. The p-Laplace eigenvalue problem as p → ∞ in a Finsler metric. J Eur Math Soc (JEMS), 2006, 8(1): 123–138

    Article  MathSciNet  MATH  Google Scholar 

  4. Bobkov V, Parini E. On the higher Cheeger problem. J Lond Math Soc (2), 2018, 97(3): 575–600

    Article  MathSciNet  MATH  Google Scholar 

  5. Bühler T, Hein M. Spectral clustering based on the graph p-Laplacian. In: Bottou L, Littman M, eds. Proceedings of the 26th International Conference on Machine Learning (ICML 2009). 2009, 81–88

  6. Bühler T, Hein M. An inverse power method for nonlinear eigenproblems with applications in 1-spectral clustering and sparse PCA. Adv Neural Inform Process Syst, 2010, 23: 847–855

    Google Scholar 

  7. Caroccia M. Cheeger N-clusters. Calc Var Partial Differential Equations, 2017, 56 (2): Art 30 (35 pp)

  8. Chang K C. Spectrum of the 1-Laplacian and Cheeger’s constant on graphs. J Graph Theory, 2016, 81(2): 167–207

    Article  MathSciNet  MATH  Google Scholar 

  9. Chang K C, Shao S, Zhang D. The 1-Laplacian Cheeger cut: theory and algorithms. J Comput Math, 2015, 33(5): 443–467

    Article  MathSciNet  MATH  Google Scholar 

  10. Chang K C, Shao S, Zhang D. Nodal domains of eigenvectors for 1-Laplacian on graphs. Adv Math, 2017, 308: 529–574

    Article  MathSciNet  MATH  Google Scholar 

  11. Chang K C, Shao S, Zhang D, Zhang W. Nonsmooth critical point theory and applications to the spectral graph theory. Sci China Math, 2021, 64(1): 1–32

    Article  MathSciNet  MATH  Google Scholar 

  12. Cheeger J. A lower bound for the smallest eigenvalue of the Laplacian. In: Gunning R C, ed. Problems in Analysis: A Symposium in Honor of Salomon Bochner. Princeton Math Ser, Vol 31. Princeton: Princeton Univ Press, 1970, 195–199

    Google Scholar 

  13. Chung F R K. Spectral Graph Theory. CBMS Reg Conf Ser Math, No 92. Providence: Amer Math Soc, 1997

    MATH  Google Scholar 

  14. Cuesta M. Minimax theorems on C1 manifolds via Ekeland variational principle. Abstr Appl Anal, 2003, 2003(13): 757–768

    Article  MathSciNet  MATH  Google Scholar 

  15. Davies E B, Leydold J, Stadler P F. Discrete nodal domain theorems. Linear Algebra Appl, 2001, 336(1): 51–60

    MathSciNet  MATH  Google Scholar 

  16. Della Pietra F, Gavitone N, Piscitelli G. A sharp weighted anisotropic Poincaré inequality for convex domains. C R Math Acad Sci Paris, 2017, 355(7): 748–752

    Article  MathSciNet  MATH  Google Scholar 

  17. Della Pietra F, Gavitone N, Piscitelli G. On the second Dirichlet eigenvalue of some nonlinear anisotropic elliptic operators. Bull Sci Math, 2019, 155: 10–32

    Article  MathSciNet  MATH  Google Scholar 

  18. Della Pietra F, Piscitelli G. Saturation phenomena for some classes of nonlinear nonlocal eigenvalue problems. Atti Accad Naz Lincei Rend Lincei Mat Appl, 2020, 30(1): 131–150

    Article  MathSciNet  MATH  Google Scholar 

  19. Drábek P, Robinson S. Resonance problems for the p-Laplacian. J Funct Anal, 1999, 169(1): 189–200

    Article  MathSciNet  MATH  Google Scholar 

  20. Esposito L, Kawohl B, Nitsch C, Trombetti C. The Neumann eigenvalue problem for the ∞-Laplacian. Atti Accad Naz Lincei Rend Lincei Mat Appl, 2015, 26: 119–134

    Article  MathSciNet  MATH  Google Scholar 

  21. Juutinen P, Lindqvist P, Manfredi J J. The ∞-eigenvalue problem. Arch Rational Mech Anal, 1999, 148: 89–105

    Article  MathSciNet  MATH  Google Scholar 

  22. Kawohl B, Fridman V. Isoperimetric estimates for the first eigenvalue of the p-Laplace operator and the Cheeger constant. Comment Math Univ Carolin, 2003, 44(4): 659–667

    MathSciNet  MATH  Google Scholar 

  23. Kawohl B, Novaga M. The p-Laplace eigenvalue problem as p → 1 and Cheeger sets in a Finsler metric. J Convex Anal, 2008, 15(3): 623–634

    MathSciNet  MATH  Google Scholar 

  24. Lee J R, Gharan S O, Trevisan L. Multiway spectral partitioning and higher-order Cheeger inequalities. J ACM, 2014, 61(6): 37 (30 pp)

    Article  MathSciNet  MATH  Google Scholar 

  25. Littig S, Schuricht F. Convergence of the eigenvalues of the p-Laplace operator as p goes to 1. Calc Var Partial Differential Equations, 2014, 49: 707–727

    Article  MathSciNet  MATH  Google Scholar 

  26. von Luxburg U. A tutorial on spectral clustering. Stat Comput, 2007, 17(4): 395–416

    Article  MathSciNet  Google Scholar 

  27. Parini E. An introduction to the Cheeger problem. Surv Math Appl, 2011, 6: 9–21

    MathSciNet  MATH  Google Scholar 

  28. Piscitelli G. A nonlocal anisotropic eigenvalue problem. Differential Integral Equations, 2016, 29(11–12): 1001–1020

    MathSciNet  MATH  Google Scholar 

  29. Piscitelli G. The anisotropic ∞-Laplacian eigenvalue problem with Neumann boundary conditions. Differential Integral Equations, 2019, 32(11–12): 705–734

    MathSciNet  MATH  Google Scholar 

  30. Rabinowitz P H. Minimax methods in critical point theory with applications to differential equations. CBMS Reg Conf Ser Math, No 65. Providence: Amer Math Soc, 1986

    MATH  Google Scholar 

  31. Tudisco F, Hein M. A nodal domain theorem and a higher-order Cheeger inequality for the graph p-Laplacian. J Spectr Theory, 2018, 8(3): 883–908

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the MiUR-Dipartimenti di Eccellenza 2018–2022 grant “Sistemi distribuiti intelligenti” of Dipartimento di Ingegneria Elettrica e dell’Informazione “M. Scarano”, by the MiSE-FSC 2014–2020 grant “SUMMa: Smart Urban Mobility Management”, and by GNAMPA of INdAM. The authors would also like to thank D. A. La Manna and V. Mottola for the helpful conversations during the starting stage of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianpaolo Piscitelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esposito, A.C., Piscitelli, G. Pseudo-orthogonality for graph 1-Laplacian eigenvectors and applications to higher Cheeger constants and data clustering. Front. Math. China 17, 591–623 (2022). https://doi.org/10.1007/s11464-021-0961-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-021-0961-2

Keywords

MSC2020

Navigation