Log in

Normalized Ground State Solutions for Nonautonomous Choquard Equations

  • Research Article
  • Published:
Frontiers of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we study normalized ground state solutions for the following nonautonomous Choquard equation

$$\left\{ {\matrix{{ - \Delta u - \lambda u = \left( {{1 \over {{{\left| x \right|}^\mu }}} * A{{\left| u \right|}^p}} \right)\,\,A{{\left| u \right|}^{p - 2}}u,} \hfill \cr {\int_{{\mathbb{R}^N}} {{{\left| u \right|}^2}{\rm{d}}x = c,\,\,\,\,\,u \in {H^1}({\mathbb{R}^N},\mathbb{R}),} } \hfill \cr } } \right.$$

where c > 0, 0 < μ < N, λ ∈ ℝ, AC1 (ℝN, ℝ). For p ∈ (2*,μ, \({\bar p}\), we prove that the Choquard equation possesses normalized ground state solutions, and the set of ground states is orbitally stable. For \(p \in (\bar p,2_\mu ^ * )\), we find a normalized solution, which is not a global minimizer. 2*μ and 2*,μ are the upper and lower critical exponents due to the Hardy–Littlewood–Sobolev inequality, respectively. \({\bar p}\) is the L2-critical exponent. Our results generalize and extend some related results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Bellazzini J., Siciliano G., Scaling properties of functionals and the existence of constrained minimizers. J. Funct. Anal., 2011, 261(9): 2486–2507

    Article  MathSciNet  MATH  Google Scholar 

  2. Bellazzini J., Visciglia N., On the orbital stability for a class of nonautonomous NLS. Indiana Univ. Math. J., 2010, 59(3): 1211–1230

    Article  MathSciNet  MATH  Google Scholar 

  3. Bogachev V.I., Measure Theory, Vol. I. Berlin: Springer, 2007

    Book  MATH  Google Scholar 

  4. Cazenave T., Semilinear Schrödinger Equations. Courant Lect. Notes Math., Vol. 10, Providence, RI: Amer. Math. Soc., 2003

    MATH  Google Scholar 

  5. Cazenave T., Lions P.-L., Orbital stability of standing waves for some nonlinear Schrödinger equations. Comm. Math. Phys., 1982, 85(4): 549–561

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen J., Guo B., Strong instability of standing waves for a nonlocal Schrödinger equation. Physica D: Nonlinear Phenomena, 2007, 227(2): 142–148

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen S., Tang X., Normalized solutions for nonautonomous Schrödinger equations on a suitable manifold. J. Geom. Anal., 2020, 30(2): 1637–1660

    Article  MathSciNet  MATH  Google Scholar 

  8. Feng B., Yuan X., On the cauchy problem for the Schrödinger–Hartree equation. Evol. Equ. Control Theory, 2015, 4(4): 431–445

    Article  MathSciNet  MATH  Google Scholar 

  9. Jeanjean L., Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear Anal., 1997, 28(10): 1633–1659

    Article  MathSciNet  MATH  Google Scholar 

  10. Lenzmann E., Uniqueness of ground states for pseudorelativistic Hartree equations. Anal. PDE, 2009, 2(1): 1–27

    Article  MathSciNet  MATH  Google Scholar 

  11. Li G., Ye H., The existence of positive solutions with prescribed L2-norm for nonlinear Choquard equations. J. Math. Phys., 2014, 55(12): 121501

    Article  MathSciNet  MATH  Google Scholar 

  12. Lieb E.H., Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Studies in Appl. Math., 1976/77, 57(2): 93–105

    Article  MathSciNet  MATH  Google Scholar 

  13. Lieb E.H., Loss M., Analysis, Second Edition. Graduate Studies in Mathematics, Vol. 14, Providence, RI: Amer. Math. Soc., 2001

    MATH  Google Scholar 

  14. Lions P.L., The concentration-compactness principle in the calculus of variations. The locally compact case. I. Ann. Inst. H. Poincare Anal. Non Lineaire, 1984, 1(2): 109–145

    Article  MathSciNet  MATH  Google Scholar 

  15. Lions P.L., The concentration-compactness principle in the calculus of variations. The locally compact case. II. Ann. Inst. H. Poincare Anal. Non Lineaire, 1984, 1(4): 223–283

    Article  MathSciNet  MATH  Google Scholar 

  16. Moroz I.M., Penrose R., Tod P., Spherically-symmetric solutions of the Schrödinger–Newton equations. Classical Quantum Gravity, 1998, 15(9): 2733–2742

    Article  MathSciNet  MATH  Google Scholar 

  17. Moroz V., Van Schaftingen J., Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J. Funct. Anal., 2013, 265(2): 153–184

    Article  MathSciNet  MATH  Google Scholar 

  18. Pekar S.I., Untersuchungen über die Elektronentheorie der Kristalle. Berlin: AkademieVerlag, 1954

    Book  MATH  Google Scholar 

  19. Ye H., Mass minimizers and concentration for nonlinear Choquard equations in ℝn. Topol. Methods Nonlinear Anal., 2016, 48(2): 393–417

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by NSFC (Nos. 11901532, 11901531).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lushun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, H., Wang, L. Normalized Ground State Solutions for Nonautonomous Choquard Equations. Front. Math 18, 1269–1294 (2023). https://doi.org/10.1007/s11464-020-0189-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-020-0189-6

Keywords

MSC2020

Navigation