Log in

Structured backward error for palindromic polynomial eigenvalue problems, II: Approximate eigentriplets

  • Research Article
  • Published:
Frontiers of Mathematics in China Aims and scope Submit manuscript

Abstract

A detailed structured backward error analysis for four kinds of palindromic polynomial eigenvalue problems (PPEPs)

$$P(\lambda ) \equiv (\sum\limits_{\ell = 0}^d {{A_\ell }{\lambda ^\ell }} )x = 0,{A_{d - \ell }} = \varepsilon A_\ell ^*,\ell = 0,1...,\left\lfloor {\frac{d}{2}} \right\rfloor,$$

for an approximate eigentriplet is performed, where * is one of the two actions: transpose and conjugate transpose, and ε ∈ {±1} The analysis is concerned with estimating the smallest perturbation to P(λ); while preserving the respective palindromic structure, such that the given approximate eigentriplet is an exact eigentriplet of the perturbed PPEP. Previously, R. Li, W. Lin, and C. Wang [Numer. Math., 2010, 116(1): 95[122] had only considered the case of an approximate eigenpair for PPEP but commented that attempt for an approximate eigentriplet was unsuccessful. Indeed, the latter case is much more complicated. We provide computable upper bounds for the structured backward errors. Our main results in this paper are several informative and very sharp upper bounds that are capable of revealing distinctive features of PPEP from general polynomial eigenvalue problems (PEPs). In particular, they reveal the critical cases in which there is no structured backward perturbation such that the given approximate eigentriplet becomes an exact one of any perturbed PPEP, unless further additional conditions are imposed. These critical cases turn out to the same as those from the earlier studies on an approximate eigenpair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Byers R, Mackey D S, Mehrmann V, Xu H. Symplectic, BVD, and palindromic approaches to discrete-time control problems. Technical Report, Preprint 14–2008, Institute of Mathematics, Technische Universität Berlin, 2008

    Google Scholar 

  2. Chu E K-W, Hwang T M, Lin W W, Wu C T. Vibration of fast trains, palindromic eigenvalue problems and structure-preserving doubling algorithms. J Comput Appl Math, 2008, 219: 237–252

    Article  MathSciNet  MATH  Google Scholar 

  3. Guo C, Lin W W. Solving a structured quadratic eigenvalue problem by a structurepreserving doubling algorithm. SIAM J Matrix Anal Appl, 2010, 31(5): 2784–2801

    Article  MathSciNet  MATH  Google Scholar 

  4. Higham N J, Tisseur F, van Dooren P. Detecting a definite Hermitian pair and a hyperbolic or elliptic quadratic eigenvalue problem, and associated nearness problems. Linear Algebra Appl, 2002, 351–352: 455–474

    Article  MathSciNet  MATH  Google Scholar 

  5. Hilliges A. Numerische Lösung von quadratischen Eigenwertproblemen mit Anwendungen in der Schiendynamik. Master’s Thesis, Technical University Berlin, Germany, July 2004

    Google Scholar 

  6. Hilliges A, Mehl C, Mehrmann V. On the solution of palindramic eigenvalue problems. In: Proceedings of 4th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS), Jyväskylä, Finland, 2004

    Google Scholar 

  7. Huang T M, Li T, Lin W W, Wu C T. Numerical studies on structure-preserving algorithms for surface acoustic wave simulations. J Comput Appl Math, 2013, 244(1): 140–154

    Article  MathSciNet  MATH  Google Scholar 

  8. Huang T M, Lin W W, Qian J. Numerically stable, structure-preserving algorithms for palindromic quadratic eigenvalue problems arising from vibration of fast trains. SIAM J Matrix Anal Appl, 2009, 30(4): 1566–1592

    Article  MATH  Google Scholar 

  9. Huang T M, Lin W W, Su W S. Palindromic quadratization and structure-preserving algorithm for palindromic matrix polynomials of even degree. Numer Math, 2011, 118(4): 713–735

    Article  MathSciNet  MATH  Google Scholar 

  10. Ipsen I C F. Accurate eigenvalues for fast trains. SIAM News, 2004, 37(9)

    Google Scholar 

  11. Li R C, Lin W W, Wang C S. Structured backward error for palindromic polynomial eigenvalue problems. Numer Math, 2010, 116(1): 95–122

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu C, Li R C. Structured backward error for palindromic polynomial eigenvalue problems, ii: Approximate eigentriplets. Technical Report 2016–12, Dept Math, Univ of Texas at Arlington, December 2016. https://doi.org/www.uta.edu/math/preprint/

    Google Scholar 

  13. Liu X G, Wang Z X. A note on the backward errors for Hermite eigenvalue problems. Appl Math Comput, 2005, 165(2): 405–417

    MathSciNet  MATH  Google Scholar 

  14. Lu L, Wang T, Kuo Y C, Li R C, Lin W W. A fast algorithm for fast train palindromic quadratic eigenvalue problems. SIAM J Sci Comput, 2016, 38(6): 3410–3429

    Article  MathSciNet  MATH  Google Scholar 

  15. Lu L, Yuan F, Li R C. A new look at the doubling algorithm for a structured palindromic quadratic eigenvalue problem. Numer Linear Algebra Appl, 2015, 22: 393–409

    Article  MathSciNet  MATH  Google Scholar 

  16. Mackey D S, Mackey N, Mehl C, Mehrmann V. Structured polynomial eigenvalue problems: Good vibrations from good linearizations. SIAM J Matrix Anal Appl, 2006, 28(4): 1029–1051

    Article  MathSciNet  MATH  Google Scholar 

  17. Schröder C. URV decomposition based structured methods for palindromic and even eigenvalue problems. Technical Report, Preprint 375, TU Berlin, Matheon, Germany, 2007

    Google Scholar 

  18. Schröder C. A QR-like algorithm for the palindromic eigenvalue problem. Technical Report, Preprint 388, TU Berlin, Matheon, Germany, 2007

    Google Scholar 

  19. Tisseur F. Backward error and condition of polynomial eigenvalue problems. Linear Algebra Appl, 2000, 309(1–3): 339–361

    Article  MathSciNet  MATH  Google Scholar 

  20. Xu H. On equivalence of pencils from discrete-time and continuous-time control. Linear Algebra Appl, 2006, 414: 97–124

    Article  MathSciNet  MATH  Google Scholar 

  21. Zaglmayr S, Schöberl J, Langer U. Eigenvalue problems in surface acoustic wave filter simulations. In: Bucchianico A, Mattheij R M M, Peletier M A, eds. Progress in Industrial Mathematics at ECMI 2004. Math Ind, Vol 8. Berlin: Springer, 2006, 74–98

    Google Scholar 

Download references

Acknowledgements

Changli Liu was supported in part by the International Visiting Program for Excellent Young Scholars of Sichuan University and the National Natural Science Foundation of China (Grant No. 11501388). Ren-Cang Li was supported in part by the Natural Science Foundation (Grants DMS-1317330, DMS-1719620, and CCF-1527104) and the Natural Science Foundation of China (Grant No. 11428104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ren-Cang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Li, RC. Structured backward error for palindromic polynomial eigenvalue problems, II: Approximate eigentriplets. Front. Math. China 13, 1397–1426 (2018). https://doi.org/10.1007/s11464-018-0738-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-018-0738-4

Keywords

MSC

Navigation