Log in

Undrained cyclic responses of biocemented calcareous silty sand

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Microbially induced calcium carbonate precipitation (MICP) technology is an emerging and environmentally sustainable method for improving the strength and stiffness of soil. Specifically, this innovative approach has gained favor in marine engineering due to the advantaged compatibility between precipitated calcium carbonate induced by MICP and coral sand. Sand containing fines is susceptible to liquefy. Whereas, the impact of fines contents on cyclic behavior of MICP-treated calcareous sand remains uncertain. Consequently, this technical note aims to investigate the liquefaction behavior of biocemented calcareous silty sand by conducting undrained cyclic triaxial shear tests and microscopic analysis. The results revealed the patterns of the excess pore water pressure curves and cyclic deformation characteristics as the fines contents increased. The liquefaction resistance of biocemented sand initially decreases with the addition of fines but subsequently exhibits an increasing trend. Microscopic analysis showed that at the cementation level with the cementation solution concentration of 1 mol/L, the calcium carbonate crystals are mainly attached to the surface of sand grains and this pattern does not directly affect the force chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Allen J, Bradley B, Green R et al (2010) Geotechnical reconnaissance of the 2010 darfield (canterbury) earthquake. Bull N Z Soc Earthq Eng 43:243. https://doi.org/10.5459/bnzsee.43.4.243-320

    Article  Google Scholar 

  2. ASTM (1995) Standard test method for load controlled cyclic triaxial strength of soil. ASTM, West Conshohocken

    Google Scholar 

  3. ASTM (2020) Standard test method for sieve analysis of fines and coarse aggregates. ASTM, West Conshohocken

    Google Scholar 

  4. Coop M, Sorensen K, Bodas Freitas T et al (2004) Particle breakage during shearing of a carbonate sand. Géotechnique 54:157–163. https://doi.org/10.1680/geot.2004.54.3.157

    Article  Google Scholar 

  5. Cui M, Zheng J, Chu J et al (2020) Bio-mediated calcium carbonate precipitation and its effect on the shear behaviour of calcareous sand. Acta Geotech 16:1377–1389. https://doi.org/10.1007/s11440-020-01099-0

    Article  Google Scholar 

  6. Darby KM, Hernandez GL, DeJong JT et al (2019) Centrifuge model testing of liquefaction mitigation via microbially induced calcite precipitation. J Geotech Geoenviron Eng. https://doi.org/10.1061/(asce)gt.1943-5606.0002122

    Article  Google Scholar 

  7. Dejong JT, Soga K, Kavazanjian E et al (2013) Biogeochemical processes and geotechnical applications: Progress, opportunities and challenges. Géotechnique 63:287–301. https://doi.org/10.1680/geot.SIP13.P.017

    Article  Google Scholar 

  8. Feng K, Montoya B (2016) Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading. J Geotech Geoenviron Eng 142:04015057. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001379

    Article  Google Scholar 

  9. Gobbi S, Reiffsteck P, Lenti L et al (2021) Liquefaction triggering in silty sands: Effects of non-plastic fines and mixture-packing conditions. Acta Geotech 17:391–410. https://doi.org/10.1007/s11440-021-01262-1

    Article  Google Scholar 

  10. JSSMFE (1990) Test method for minimum and maximum densities of sands. Japanese Society of Soil Mechanics and Foundation Engineering, JSSMFE

    Google Scholar 

  11. Lai H, Cui M, Chu J (2023) Effect of ph on soil improvement using one-phase-low-ph micp or eicp biocementation method. Acta Geotech 18:3259–3272. https://doi.org/10.1007/s11440-022-01759-3

    Article  Google Scholar 

  12. Lai H, Cui M, Wu S et al (2021) Retarding effect of concentration of cementation solution on biocementation of soil. Acta Geotech 16:1457–1472. https://doi.org/10.1007/s11440-021-01149-1

    Article  Google Scholar 

  13. Lin H, Suleiman MT, Brown DG (2020) Investigation of pore-scale caco3 distributions and their effects on stiffness and permeability of sands treated by microbially induced carbonate precipitation (micp). Soils Found 60:944–961. https://doi.org/10.1016/j.sandf.2020.07.003

    Article  Google Scholar 

  14. Liu C, Wang R (1998) Preliminary research on physical and mechanical properties of calcareous sand. Rock Soil Mech. https://doi.org/10.16285/j.rsm.1998.01.006

    Article  Google Scholar 

  15. Liu C, Yang Z (1995) The present condition and development in studies of mechanical properties of calcareous soils. Rock Soil Mech. 16:74–84. https://doi.org/10.16285/j.rsm.1995.04.010

    Article  Google Scholar 

  16. Liu H, **ao P, **ao Y et al (2018) Dynamic behaviors of micp-treated calcareous sand in cyclic tests. Chin. J. Geotech 40:38–45. https://doi.org/10.11779/CJGE201801002

    Article  Google Scholar 

  17. Ma G, **ao Y, He X et al (2022) Kaolin-nucleation-based biotreated calcareous sand through unsaturated percolation method. Acta Geotech 17:3181–3193. https://doi.org/10.1007/s11440-022-01459-y

    Article  Google Scholar 

  18. Miao L, Wang H, Sun X et al (2024) Effect analysis of biomineralization for solidifying desert sands. Biogeotechnics 2:100065. https://doi.org/10.1016/j.bgtech.2023.100065

    Article  Google Scholar 

  19. Montoya BM, DeJong JT (2015) Stress-strain behaviour of sands cemented by microbially induced calcite precipitation. J Geotech Geoenviron Eng. https://doi.org/10.1061/(ASCE)GT.1943-5606

    Article  Google Scholar 

  20. Montoya BM, Dejong JT, Boulanger RW (2013) Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation. Géotechnique 63:302–312. https://doi.org/10.1680/geot.SIP13.P.019

    Article  Google Scholar 

  21. Mortensen B, Haber M, DeJong J et al (2011) Effects of environmental factors on microbial induced calcium carbonate precipitation. J Appl Microbiol 111:338–349. https://doi.org/10.1111/j.1365-2672.2011.05065.x

    Article  Google Scholar 

  22. Polito CP, Martin JR (2001) Effects of nonplastic fines on the liquefaction resistance of sands. J Geotech Geoenviron Eng 127:408–415. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:5(408)

    Article  Google Scholar 

  23. Porcino DD, Diano V (2017) The influence of non-plastic fines on pore water pressure generation and undrained shear strength of sand-silt mixtures. Soil Dyn Earthquake Eng 101:311–321. https://doi.org/10.1016/j.soildyn.2017.07.015

    Article  Google Scholar 

  24. Riveros GA, Sadrekarimi A (2020) Liquefaction resistance of fraser river sand improved by a microbially-induced cementation. Soil Dyn Earthquake Eng. https://doi.org/10.1016/j.soildyn.2020.106034

    Article  Google Scholar 

  25. Sasaki T, Kuwano R (2016) Undrained cyclic triaxial testing on sand with non-plastic fines content cemented with microbially induced caco3. Soils Found 56:485–495. https://doi.org/10.1016/j.sandf.2016.04.014

    Article  Google Scholar 

  26. Shi J, Haegeman W, Andries J (2021) Investigation on the mechanical properties of a calcareous sand: The role of the initial fabric. Mar Georesour Geotechnol 39:859–875. https://doi.org/10.1080/1064119x.2020.1775327

    Article  Google Scholar 

  27. Shi J, Haegeman W, Cnudde V (2021) Anisotropic small-strain stiffness of calcareous sand affected by sample preparation, particle characteristic and gradation. Géotechnique 71:305–319. https://doi.org/10.1680/jgeot.18.P.348

    Article  Google Scholar 

  28. Shi J, Li H, **ao Y et al (2023) Small strain stiffness of graded sands with light biocementation. Acta Geotech. https://doi.org/10.1007/s11440-023-01886-5

    Article  Google Scholar 

  29. Shi J, **ao Y, Carraro JAH et al (2023) Anisotropic small-strain stiffness of lightly biocemented sand considering grain morphology. Géotechnique. https://doi.org/10.1680/jgeot.22.00350

    Article  Google Scholar 

  30. Simatupang M, Okamura M, Hayashi K et al (2018) Small-strain shear modulus and liquefaction resistance of sand with carbonate precipitation. Soil Dyn Earthquake Eng 115:710–718. https://doi.org/10.1016/j.soildyn.2018.09.027

    Article  Google Scholar 

  31. Song C, Elsworth D (2024) Stress sensitivity of permeability in high-permeability sandstone sealed with microbially-induced calcium carbonate precipitation. Biogeotechnics 2:100063. https://doi.org/10.1016/j.bgtech.2023.100063

    Article  Google Scholar 

  32. Stuedlein AW, Jana A, Dadashiserej A et al (2023) On the in situ cyclic resistance of natural sand and silt deposits. J Geotech Geoenviron Eng 149:04023015. https://doi.org/10.1061/JGGEFK.GTENG-10784

    Article  Google Scholar 

  33. Tokimatsu K, Tamura S, Suzuki H et al (2012) Building damage associated with geotechnical problems in the 2011 tohoku pacific earthquake. Soils Found 52:956–974. https://doi.org/10.1016/j.sandf.2012.11.014

    Article  Google Scholar 

  34. Wang L, Chu J, Wu S et al (2021) Stress–dilatancy behavior of cemented sand: Comparison between bonding provided by cement and biocement. Acta Geotech 16:1441–1456. https://doi.org/10.1007/s11440-021-01146-4

    Article  Google Scholar 

  35. Wang X, Li C, Shi Y et al (2024) Improvements in saline soil and the law of water-salt transport based on salt inhibition using micp technology. Biogeotechnics 2:100055. https://doi.org/10.1016/j.bgtech.2023.100055

    Article  Google Scholar 

  36. Wen K, Li Y, Liu S et al (2019) Development of an improved immersing method to enhance microbial induced calcite precipitation treated sandy soil through multiple treatments in low cementation media concentration. Geotech Geol Eng 37:1015–1027. https://doi.org/10.1007/s10706-018-0669-6

    Article  Google Scholar 

  37. Wu H, **ao Y (2022) 3d dem modeling of biocemented sand with fines as cementing agents. Int J Numer Anal Methods Geomech. https://doi.org/10.1002/nag.3466

    Article  Google Scholar 

  38. **ao P, Liu H, Stuedlein AW et al (2019) Effect of relative density and biocementation on cyclic response of calcareous sand. Can Geotech J 56:1849–1862. https://doi.org/10.1139/cgj-2018-0573

    Article  Google Scholar 

  39. **ao P, Liu H, **ao Y et al (2018) Liquefaction resistance of bio-cemented calcareous sand. Soil Dyn Earthquake Eng 107:9–19. https://doi.org/10.1016/j.soildyn.2018.01.008

    Article  Google Scholar 

  40. **ao Y, Cao B, Shi J et al (2023) State-of-the-art review on the application of microfluidics in biogeotechnology. Geotech Transp. https://doi.org/10.1016/j.trgeo.2023.101030

    Article  Google Scholar 

  41. **ao Y, Chen H, Stuedlein AW et al (2020) Restraint of particle breakage by biotreatment method. J Geotech Geoenviron Eng 146:04020123. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002384

    Article  Google Scholar 

  42. **ao Y, He X, Zaman M et al (2022) Review of strength improvements of biocemented soils. Int J Geomech 22:03122001. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002565

    Article  Google Scholar 

  43. **ao Y, Hu J, Shi J et al (2023) Static and cyclic liquefaction of granular materials considering grain morphology. Transp Geotech 42:101107. https://doi.org/10.1016/j.trgeo.2023.101107

    Article  Google Scholar 

  44. **ao Y, Liu H, **ao P et al (2016) Fractal crushing of carbonate sands under impact loading. Geotech Lett 6:199–204. https://doi.org/10.1680/jgele.16.00056

    Article  Google Scholar 

  45. **ao Y, Wu B, Shi J et al (2023) Acoustic emission of biocemented calcareous sand base. Int J Geomech 23:04023153. https://doi.org/10.1061/IJGNAI.GMENG-8817

    Article  Google Scholar 

  46. **ao Y, Zhang Z, Stuedlein AW et al (2021) Liquefaction modeling for biocemented calcareous sand. J Geotech Geoenviron Eng. https://doi.org/10.1061/(ASCE)gt.1943-5606.0002666

    Article  Google Scholar 

  47. **ao Y, Zhao C, Sun Y et al (2021) Compression behavior of micp-treated sand with various gradations. Acta Geotech 16:1391–1400. https://doi.org/10.1007/s11440-020-01116-2

    Article  Google Scholar 

  48. Yang J, Luo XD (2015) Exploring the relationship between critical state and particle shape for granular materials. J Mech Phys Solids 84:196–213. https://doi.org/10.1016/j.jmps.2015.08.001

    Article  Google Scholar 

  49. Yang Y, Chu J, **ao Y et al (2019) Seepage control in sand using bioslurry. Constr Build Mater 212:342–349. https://doi.org/10.1016/j.conbuildmat.2019.03.313

    Article  Google Scholar 

  50. Zamani A, Montoya BM (2019) Undrained cyclic response of silty sands improved by microbial induced calcium carbonate precipitation. Soil Dyn Earthquake Eng 120:436–448. https://doi.org/10.1016/j.soildyn.2019.01.010

    Article  Google Scholar 

  51. Zamani A, **ao P, Baumer T et al (2021) Mitigation of liquefaction triggering and foundation settlement by micp treatment. J Geotech Geoenviron Eng 147:04021099. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002596

    Article  Google Scholar 

  52. Zhang X, Chen Y, Liu H et al (2020) Performance evaluation of a micp-treated calcareous sandy foundation using shake table tests. Soil Dyn Earthquake Eng. https://doi.org/10.1016/j.soildyn.2019.105959

    Article  Google Scholar 

  53. Zhao C, **ao Y, He X et al (2023) Influence of injection methods on bio-mediated precipitation of carbonates in fracture-mimicking microfluidic chip. Géotechnique. https://doi.org/10.1680/jgeot.23.00155

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos. 52108301, and 52078085), and the Fundamental Research Funds for the Central Universities (Project No. 2022CDJQY-012).

Author information

Authors and Affiliations

Authors

Contributions

Yang **ao: Conceptualization, methodology, writing—review and editing, visualization; Jian Hu: Investigation, conceptualization, methodology, formal analysis, writing—review and editing, conceptualization, methodology, writing—review and editing, visualization; **quan Shi: Formal analysis, writing—review and editing, funding, supervision, project administration; Lei Zhang: Formal analysis, writing—review and editing; Hanlong Liu: Writing—review and editing.

Corresponding author

Correspondence to **quan Shi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**ao, Y., Hu, J., Shi, J. et al. Undrained cyclic responses of biocemented calcareous silty sand. Acta Geotech. (2024). https://doi.org/10.1007/s11440-024-02293-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11440-024-02293-0

Keywords

Navigation