Log in

Solid–fluid interaction in porous materials with internal erosion

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Various applications in science and engineering involve porous materials where the fluid erodes the solid either chemically or mechanically and transports the finer particles through the larger pore spaces of the residual solid. In soil mechanics, the process is called suffusion. In rocks, erosion is mainly due to chemical dissolution. Irrespective of the manner in which the solid erodes, the much finer particles mix with the pure fluid to form a thick fluid whose mass density is greater than that of the pure fluid but less than that of the intact solid. As the solid loses mass, its porosity increases and its mechanical properties degrade, thus impacting the deformation and fluid flow responses of the system. This paper formulates the complex kinematics and conservation equations governing the solid–fluid interaction with internal erosion. We use the classic \(\varvec{u}/p\) formulation in which \(\varvec{u}\) is the displacement of the residual solid and p is the pressure in the thick fluid. We focus on the case of chemical erosion in rocks where the eroded particles are so small that the interface between them and the pure fluid may be neglected. We then present numerical examples demonstrating the flow and deformation processes in porous materials subjected to internal erosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability statement

The datasets generated during the course of this study are available from the corresponding author upon reasonable request.

References

  1. Andriani G, Walsh N (2003) Fabric, porosity and water permeability of calcarenites from Apulia (SE Italy) used as building and ornamental stone. Bull Eng Geol Environ 62(1):77–84

    Article  Google Scholar 

  2. Audigane P, Gaus I, Czernichowski-Lauriol I, Pruess K, Xu T (2007) Two-dimensional reactive transport modeling of \(\text{ CO}_2\) injection in a saline aquifer at the Sleipner site, North Sea. Am J Sci 307(7):974–1008

    Article  Google Scholar 

  3. Bennett KC, Berla LA, Nix WD, Borja RI (2015) Instrumented nanoindentation and 3D mechanistic modeling of a shale at multiple scales. Acta Geotechnica 10(1):1–14

    Article  Google Scholar 

  4. Borja RI, Alarcón E (1995) A mathematical framework for finite strain elastoplastic consolidation Part 1: Balance laws, variational formulation, and linearization. Comput Methods Appl Mech Eng 122(1–2):145–171

    Article  MATH  Google Scholar 

  5. Borja RI, Tamagnini C, Alarcón E (1998) Elastoplastic consolidation at finite strain Part 2: Finite element implementation and numerical examples. Comput Methods Appl Mech Eng 159(1–2):103–122

    Article  MATH  Google Scholar 

  6. Borja RI (2013) Plasticity Modeling & Computation. Springer, Berlin-Heidelberg

    Book  MATH  Google Scholar 

  7. Borja RI, Choo J (2016) Cam-clay plasticity, Part VIII: A constitutive framework for porous materials with evolving internal structure. Comput Methods Appl Mech Eng 309:653–679

    Article  MathSciNet  MATH  Google Scholar 

  8. Borja RI, Yin Q, Zhao Y (2020) Cam-clay plasticity. Part IX: On the anisotropy, heterogeneity, and viscoplasticity of shale. Comput Methods Appl Mech Eng 360:112695

    Article  MathSciNet  MATH  Google Scholar 

  9. Borja RI (2022) Computational poromechanics, lecture notes. Stanford University, Stanford, USA

    Google Scholar 

  10. Borja RI, Chen W, Odufisan AR (2023) A constitutive framework for rocks undergoing solid dissolution. J Mech Phys Solids 73:105198

    Article  MathSciNet  Google Scholar 

  11. Carroll SA, McNab WW, Dai Z, Torres SC (2013) Reactivity of mount Simon sandstone and the Eau Claire shale under \(\text{ CO}_2\) storage conditions. Environ Sci Technol 47(1):252–261

    Article  Google Scholar 

  12. Ciantia MO, Castellanza R, Di Prisco C (2015) Experimental study on the water-induced weakening of calcarenites. Rock Mech Rock Eng 48(2):441–461

    Article  Google Scholar 

  13. Ciantia MO, Hueckel T (2013) Weathering of submerged stressed calcarenites: chemo-mechanical coupling mechanisms. Géotechnique 63(9):768–785

    Article  Google Scholar 

  14. Civan F (2002) Relating permeability to pore connectivity using a power-law flow unit equation. Petrophys SPWLA J Form Eval Reserv Des 43(06)

  15. Costa A (2016) Permeability-porosity relationship: a reexamination of the Kozeny-Carman equation based on a fractal pore-space geometry assumption. Geophys Res Lett 33(2)

  16. Coussot P (1997) Mudflow rheology and dynamics. Balkema, Rotterdam

    MATH  Google Scholar 

  17. Coussy O (2004) Poromechanics. John Wiley & Sons, Hoboken, New Jersey

    MATH  Google Scholar 

  18. Culshaw MG, Maltham AC (1987) Natural and artificial cavities as ground engineering hazards. Q J Eng Geol Hydrogeol 20(2):139–150

    Article  Google Scholar 

  19. Ellis B, Peters C, Fitts J, Bromhal G, McIntyre D, Warzinski R, Rosenbaum E (2011) Deterioration of a fractured carbonate caprock exposed to \(\text{ CO}_2\)-acidified brine flow. Greenh Gases Sci Technol 1(3):248–260

    Article  Google Scholar 

  20. Eubanks RA, Sternberg E (1954) On the axisymmetric problem of elasticity theory for a medium with transverse isotropy. J Ration Mech Anal 3:89–101

    MathSciNet  MATH  Google Scholar 

  21. Fell R, Wan CF, Cyganiewicz J, Foster M (2003) Time for development of internal erosion and pi** in embankment dams. J Geotech Geoenviron Eng 129(4):307–314

    Article  Google Scholar 

  22. Flores-Berrones R, Ramírez-Reynaga M, Macari EJ (2011) Internal erosion and rehabilitation of an earth-rock dam. J Geotech Geoenviron Eng 137(2):150–160

    Article  Google Scholar 

  23. Friedson AJ, Stevenson DJ (1983) Viscosity of rock-ice mixtures and applications to the evolution of icy satellites. Icarus 56(1):1–14

    Article  Google Scholar 

  24. Garbis SJ, Taylor JL (1986) The utility of \(\text{ CO}_2\) as an energizing component for fracturing fluids. SPE Prod Eng 1(05):351–358

    Article  Google Scholar 

  25. Gaus I (2010) Role and impact of \(\text{ CO}_2\)-rock interactions during \(\text{ CO}_2\) storage in sedimentary rocks. Int J Greenh Gas Control 4(1):73–89

    Article  Google Scholar 

  26. Gelet R, Kodieh A, Marot D, Nguyen N-S (2021) Analysis of volumetric internal erosion in cohesionless soils: model, experiments and simulations. Int J Numer Anal Methods Geomech 45(18):2780–2806

    Article  Google Scholar 

  27. Ghanbarian B, Male F (2021) Theoretical power-law relationship between permeability and formation factor. J Petrol Sci Eng 198:108249

    Article  Google Scholar 

  28. Harvey OR, Qafoku NP, Cantrell KJ, Lee G, Amonette JE, Brown CF (2013) Geochemical implications of gas leakage associated with geologic \(\text{ CO}_2\) storage–a qualitative review. Environ Sci Technol 47(1):23–36

    Article  Google Scholar 

  29. Hitchon B (1996) Aquifer disposal of carbon dioxide: hydrodynamic and mineral trap**-proof of concept. Geoscience Publishing Ltd., Alberta, Canada

    Google Scholar 

  30. Holtz R, Kovacs WD (1981) An introduction to geotechnical engineering. Prentice-Hall, New Jersey

    Google Scholar 

  31. Hu M, Hueckel T (2019) Modeling of subcritical cracking in acidized carbonate rocks via coupled chemo-elasticity. Geomech Energy Environ 19:100114

    Article  Google Scholar 

  32. Ip SCY, Choo J, Borja RI (2021) Impacts of saturation-dependent anisotropy on the shrinkage behavior of clay rocks. Acta Geotechnica 16(11):3381–3400

    Article  Google Scholar 

  33. Ip SCY, Borja RI (2022) Evolution of anisotropy with saturation and its implications for the elastoplastic responses of clay rocks. Int J Numer Anal Methods Geomech 46(1):23–46

    Article  Google Scholar 

  34. Ip SCY, Borja RI (2022) A phase-field approach for compaction band formation due to grain crushing. Int J Numer Anal Methods Geomech 46(16):2965–2987

    Article  Google Scholar 

  35. Jiang Y, Luo Y, Lu Y, Qin C, Liu H (2016) Effects of supercritical \(\text{ CO}_2\) treatment time, pressure, and temperature on microstructure of shale. Energy 97:173–181

    Article  Google Scholar 

  36. Jun YS, Giammar DE, Werth CJ (2013) Impacts of geochemical reactions on geologic carbon sequestration. Environ Sci Technol 47(1):3–8

    Article  Google Scholar 

  37. Kobayashi I, Owada H, Ishii T, Iizuka A (2017) Evaluation of specific surface area of bentonite-engineered barriers for Kozeny-Carman law. Soils Found 57(5):683–697

    Article  Google Scholar 

  38. Lasaga AC (1984) Chemical kinetics of water-rock interactions. J Geophys Res Solid Earth 89(B6):4009–4025

    Article  Google Scholar 

  39. Lasaga AC (2014) Kinetic theory in the earth sciences. Princeton University Press, Princeton, New Jersey

    Google Scholar 

  40. Latief FDE, Fauzi U (2012) Kozeny-Carman and empirical formula for the permeability of computer rock models. Int J Rock Mech Min Sci 50:117–123

    Article  Google Scholar 

  41. Lee SY, Hyder LK, Alley PD (1991) Microstructural and mineralogical characterization of selected shales in support of nuclear waste repository studies. In: Microstructure of fine-grained sediments. Frontiers in sedimentary geology. Springer, New York, NY

  42. Li L, Rivas E, Gracie R, Dusseault MB (2021) Methodology for the nonlinear coupled multi-physics simulation of mineral dissolution. Int J Numer Anal Methods Geomech 45(15):2193–2213

    Article  Google Scholar 

  43. Li W, Sun Y, **n M, Bian R, Wang H, Wang YN, Hu Z, Linh HN, Zhang D (2020) Municipal solid waste incineration fly ash exposed to carbonation and acid rain corrosion scenarios: Release behavior, environmental risk, and dissolution mechanism of toxic metals. Sci Total Environ 744:140857

    Article  Google Scholar 

  44. Liu D, Li Y, Yang S, Agarwal RK (2021) \(\text{ CO}_2\) sequestration with enhanced shale gas recovery. Energy Sources Part A Recover Util Environ Effects 43(24):3227–3237

    Google Scholar 

  45. Liu F, Lu P, Griffith C, Hedges SW, Soong Y, Hellevang H, Zhu C (2012) \(\text{ CO}_2\)-brine-caprock interaction: reactivity experiments on Eau Claire shale and a review of relevant literature. Int J Greenh Gas Control 7:153–167

    Article  Google Scholar 

  46. Luo Y, Luo B, **ao M (2020) Effect of deviator stress on the initiation of suffusion. Acta Geotechnica 15(6):1607–1617

    Article  Google Scholar 

  47. Lyu Q, Ranjith PG, Long X, Ji B (2016) Experimental investigation of mechanical properties of black shales after \(\text{ CO}_2\)-water-rock interaction. Materials 9(8):663

    Article  Google Scholar 

  48. Malvern LE (1969) Introduction to the mechanics of a continuous medium. Prentice-Hall Inc, Englewood Cliffs, NJ

    Google Scholar 

  49. Middleton R, Viswanathan H, Currier R, Gupta R (2014) \(\text{ CO}_2\) as a fracturing fluid: potential for commercial-scale shale gas production and \(\text{ CO}_2\) sequestration. Energy Procedia 63:7780–7784

    Article  Google Scholar 

  50. Min T, Gao Y, Chen L, Kang Q, Tao WW (2016) Changes in porosity, permeability and surface area during rock dissolution: effects of mineralogical heterogeneity. Int J Heat Mass Transf 103:900–913

    Article  Google Scholar 

  51. Mooney M (1951) The viscosity of a concentrated suspension of spherical particles. J Colloid Sci 6(2):162–170

    Article  Google Scholar 

  52. Orr FM (2018) Carbon capture, utilization, and storage: an update. SPE J 23(03):2444–2455

    Article  Google Scholar 

  53. Pechukas P (1981) Transition state theory. Annual Review of Physical Chemistry 32(1):159–177

    Article  Google Scholar 

  54. Reeves SR (2001) Geological sequestration of \(\text{ CO}_2\) in deep, unmineable coalbeds: an integrated research and commerical-scale field demonstration project. In SPE annual technical conference and exhibition. OnePetro

  55. Rice PA, Fontugne DJ, Latini RG, Barduhn AJ (1970) Anisotropic permeability in porous media. Indus Eng Chem 62(6):23–31

    Article  Google Scholar 

  56. Richards KS, Reddy KR (2007) Critical appraisal of pi** phenomena in earth dams. Bullet Eng Geol Environ 66(4):381–402

    Article  Google Scholar 

  57. Rochelle CA, Czernichowski-Lauriol I, Milodowski AE (2004) The impact of chemical reactions on \(\text{ CO}_2\) storage in geological formations: a brief review. Geol Soc London Special Pub 233(1):87–106

    Article  Google Scholar 

  58. Rohmer J, Pluymakers A, Renard F (2016) Mechano-chemical interactions in sedimentary rocks in the context of \(\text{ CO}_2\) storage: weak acid, weak effects? Earth Sci Rev 157:86–110

    Article  Google Scholar 

  59. Rutter EH (1983) Pressure solution in nature, theory and experiment. J Geol Soc 140(5):725–740

    Article  Google Scholar 

  60. Scheperboer IC, Suiker ASJ, Bosco E, Clemens FHLR (2022) A coupled hydro-mechanical model for subsurface erosion with analyses of soil pi** and void formation. Acta Geotechnica 17:4769–4798

    Article  Google Scholar 

  61. Scheperboer (2023) Condition Assessment of Concrete Sewer Pipes through an Integrated Experimental-Numerical Approach. Bouwstenen 349, Eindhoven University of Technology, The Netherlands

  62. Semnani SJ, White JA, Borja RI (2016) Thermoplasticity and strain localization in transversely isotropic materials based on anisotropic critical state plasticity. Int J Numer Anal Methods Geomech 40(18):2423–2449

    Article  Google Scholar 

  63. Sharifi J, Saberi MR, Javaherian A, Hafezi MN (2021) Investigation of static and dynamic bulk moduli in a carbonate field. Explor Geophys 52(1):16–41

    Article  Google Scholar 

  64. Shwiyhat N, **ao M (2010) Effect of suffusion on mechanical characteristics of sand. In: Scour and Erosion 378–386

  65. Smith MB, Montgomery C (2015) Hydraulic fracturing. CRC Press, Boca Raton, Florida

    Book  Google Scholar 

  66. Sone H, Zoback MD (2013) Mechanical properties of shale-gas reservoir rocks-Part 1: static and dynamic elastic properties and anisotropy. Geophysics 78(5):D381–D392

    Article  Google Scholar 

  67. Song X, Borja RI (2014) Mathematical framework for unsaturated flow in the finite deformation range. Int J Numer Methods Eng 97(9):658–682

    Article  MathSciNet  MATH  Google Scholar 

  68. Spencer AJM (2014) Continuum theory of the mechanics of fibre-reinforced composites, vol 282. Springer, New York

    Google Scholar 

  69. Spyropoulos C, Griffith WJ, Scholz CH, Shaw BE (1999) Experimental evidence for different strain regimes of crack populations in a clay model. Geophys Res Lett 26(8):1081–1084

    Article  Google Scholar 

  70. Stavropoulou M, Papanastasiou P, Vardoulakis I (1998) Coupled wellbore erosion and stability analysis. Int J Numer Anal Methods Geomech 22(9):749–769

    Article  MATH  Google Scholar 

  71. Ulm FJ, Abousleiman Y (2006) The nanogranular nature of shale. Acta Geotechnica 1(2):77–88

    Article  Google Scholar 

  72. Wang Y, Borja RI, Wu W (2023) Dynamic strain localization into a compaction band via a phase-field approach. J Mech Phys Solids 173:105228

    Article  MathSciNet  Google Scholar 

  73. Wei W, Cai J, **ao J, Meng Q, **ao B, Han Q (2018) Kozeny-Carman constant of porous media: insights from fractal-capillary imbibition theory. Fuel 234:1373–1379

    Article  Google Scholar 

  74. White JA, Borja RI (2008) Stabilized low-order finite elements for coupled solid-deformation/fluid-diffusion and their application to fault zone transients. Comput Methods Appl Mech Eng 197:4353–4366

    Article  MATH  Google Scholar 

  75. Wu W, Sharma MM (2017) Acid fracturing in shales: effect of dilute acid on properties and pore structure of shale. SPE Prod Oper 32(01):51–63

    Google Scholar 

  76. Yürüm Y, Dror Y, Levy M (1985) Effect of acid dissolution on the mineral matrix and organic matter of Zefa EFE oil shale. Fuel Process Technol 11(1):71–86

    Article  Google Scholar 

  77. Zhang Q (2020) Hydromechanical modeling of solid deformation and fluid flow in the transversely isotropic fissured rocks. Comput Geotech 128:103812

    Article  Google Scholar 

  78. Zhang Y, He J, Li X, Lin C (2019) Experimental study on the supercritical \(\text{ CO}_2\) fracturing of shale considering anisotropic effects. J Petrol Sci Eng 173:932–940

    Article  Google Scholar 

  79. Zhang Q, Yan X, Shao J (2021) Fluid flow through anisotropic and deformable double porosity media with ultra-low matrix permeability: a continuum framework. J Petrol Sci Eng 200:108349

    Article  Google Scholar 

  80. Zhang Q, Choo J, Borja RI (2019) On the preferential flow patterns induced by transverse isotropy and non-Darcy flow in double porosity media. Comput Methods Appl Mech Eng 353:570–592

    Article  MathSciNet  MATH  Google Scholar 

  81. Zhang Q, Borja RI (2021) Poroelastic coefficients for anisotropic single and double porosity media. Acta Geotechnica 16(10):3013–3025

    Article  Google Scholar 

  82. Zhao Y, Borja RI (2020) A continuum framework for coupled solid deformation-fluid flow through anisotropic elastoplastic porous media. Comput Methods Appl Mech Eng 369:113225

    Article  MathSciNet  MATH  Google Scholar 

  83. Zhao Y, Borja RI (2021) Anisotropic elastoplastic response of double-porosity media. Comput Methods Appl Mech Eng 380:113797

    Article  MathSciNet  MATH  Google Scholar 

  84. Zhao Y, Borja RI (2022) A double-yield-surface plasticity theory for transversely isotropic rocks. Acta Geotechnica. https://doi.org/10.1007/s11440-022-01605-6

    Article  Google Scholar 

  85. Zhao C, Hobbs BE, Ord A (2016) Chemical dissolution-front instability associated with water-rock reactions in groundwater hydrology: analyses of porosity-permeability relationship effects. J Hydrol 540:1078–1087

    Article  Google Scholar 

  86. Zhao Y, Semnani SJ, Yin Q, Borja RI (2018) On the strength of transversely isotropic rocks. Int J Numer Anal Methods Geomech 42(16):1917–1934

    Article  Google Scholar 

  87. Zhao Y, Wang R, Zhang JM (2022) A dual-mechanism tensile failure criterion for transversely isotropic rocks. Acta Geotechnica. https://doi.org/10.1007/s11440-022-01604-7

    Article  Google Scholar 

  88. Znidarcic D, Schiffman RL (1982) On Terzaghi’s concept of consolidation. Géotechnique 32(4):387–389

    Article  Google Scholar 

Download references

Acknowledgements

Support for this work was provided by the National Science Foundation under Award Number CMMI-1914780 and by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program, under Award Number DE-FG02-03ER15454.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronaldo I. Borja.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Tangent operator

Appendix A. Tangent operator

In this appendix, we summarize the expressions for the tangent operators used with Newton iteration to solve the nonlinear coupled system. Denoting the permeability matrix as \(\varvec{\upkappa }\), the submatrix \({{\textbf {K}}}_{ij}\) in the tangent matrix for a Newton-Raphson iteration loop takes the following forms:

$$\begin{aligned} {{\textbf {K}}}_{11}&= \frac{\partial {\mathcal {\varvec{R}}}_u}{\partial {\varvec{d}}} = \int _{\mathcal {B}}{{\textbf {B}}}^{{\textsf {T}}}\frac{\partial \{\varvec{\upsigma }'\}}{\partial {\{\varvec{\upepsilon}}\}}{{\textbf {B}}}\,dV+\int _{\mathcal {B}}\frac{\partial {{\textbf {N}}}_u^{{\textsf {T}}}{\dot{m}}^s}{\partial {\varvec{d}}}\frac{{\varvec{q}}}{\widetilde{\phi }^f_n}\, dV\,, \nonumber \\&=\int _{\mathcal {B}}{{\textbf {B}}}^{{\textsf {T}}}{{\textbf {C}}}^e{{\textbf {B}}}\,dV\nonumber \\&\quad + \int _{\mathcal {B}} {{\textbf {N}}}_u^{{\textsf {T}}}\phi _n^{sr}A(B-C)\exp (-A\varepsilon _v)\frac{{\varvec{q}}}{\widetilde{\phi }_n^f}{\textbf{1}}^{{{\textsf {T}}}}{{\textbf {B}}}\,dV. \end{aligned}$$
(72a)
$$\begin{aligned} {{\textbf {K}}}_{12}&= \frac{\partial {\mathcal {\varvec{R}}}_u}{\partial {p}} = - \int _{\mathcal {B}}{{\textbf {B}}}^{{\textsf {T}}}{\varvec{b}}{{\textbf {N}}}_p \,dV +\int _{\mathcal {B}}\frac{\partial {{\textbf {N}}}_u^{{\textsf {T}}}{\dot{m}}^s({\varvec{v}}_f-{\varvec{v}})}{\partial p}\, dV\,,\nonumber \\&= -\int _{\mathcal {B}}{{\textbf {B}}}^{{\textsf {T}}}{\varvec{b}}{{\textbf {N}}}_p \,dV + \int _{\mathcal {B}}\frac{{{\textbf {N}}}_{u}^{{\textsf {T}}}{\dot{m}}^s{{\textbf {E}}}}{\widetilde{\phi }^f_n}\,dV\,, \end{aligned}$$
(72b)
$$\begin{aligned} {{\textbf {K}}}_{21}&= \frac{\partial {\mathcal {\varvec{R}}}_p}{\partial {\varvec{d}}} = \int _{\mathcal {B}}{{\textbf {N}}}_p^{{\textsf {T}}}{\varvec{b}}{{\textbf {B}}}\,dV\nonumber \\&\quad + \left( \frac{1}{\rho _{sr}} - \frac{1}{{\rho }_{se}}\right) \int _{\mathcal {B}}\frac{\partial {{\textbf {N}}}_p^{{\textsf {T}}}{\dot{m}}^s}{\partial {\varvec{d}}}\, dV\,,\nonumber \\&=\int _\mathcal {B}{{\textbf {N}}}_p^{{\textsf {T}}}{\varvec{b}}{{\textbf {B}}}\,dV + \left( \frac{1}{\rho _{sr}} - \frac{1}{{\rho }_{se}}\right) \nonumber \\&\quad \int _{\mathcal {B}}{{\textbf {N}}}_p^{{\textsf {T}}}\phi _n^{sr}A(B-C)\exp (-A\varepsilon _v){\bf{1}}{{\textbf {B}}}\, dV\,, \end{aligned}$$
(72c)
$$\begin{aligned} {{\textbf {K}}}_{22}&= \frac{\partial {\mathcal {\varvec{R}}}_p}{\partial {p}}=\int _{\mathcal {B}}\frac{{\Delta } t}{\mu _f}{{\textbf {E}}}\varvec{\upkappa }{{\textbf {E}}}\,dV + \int _{\mathcal {B}}\frac{1}{{\mathcal {M}}_n}{{\textbf {N}}}_p^{{{\textsf {T}}}}{{\textbf {N}}}_p\,dV \nonumber \\&\quad + \int _{\mathcal {B}}\left( \frac{\psi ^f_n}{K_f} + \frac{\psi ^{se}_n}{{K}_{se}}\right) {\Delta } t{{\textbf {N}}}_p^{{{\textsf {T}}}}{\varvec{q}}{{\textbf {E}}}\,dV\nonumber \\&\quad -\int _{\mathcal {B}}\left( \frac{\psi ^f_n}{K_f} + \frac{\psi ^{se}_n}{{K}_{se}}\right) \frac{{\Delta } t}{\mu _n}{{\textbf {N}}}_p^{{{\textsf {T}}}}\nabla p\cdot \varvec{\upkappa } {{\textbf { E}}}\,dV\,. \end{aligned}$$
(72d)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Zhao, Y. & Borja, R.I. Solid–fluid interaction in porous materials with internal erosion. Acta Geotech. 18, 5147–5164 (2023). https://doi.org/10.1007/s11440-023-01906-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-023-01906-4

Keywords

Navigation