Log in

An elastoplastic mechanical constitutive model for microbially mediated cemented soils

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Microbially induced calcite precipitation (MICP) is an innovative bio-mediated soil improvement technique that develops cementation within originally loose and potentially collapsible soils. This method utilizes biogeochemical processes with microbes. It has the advantage of being friendly to the environment and sustainable. In spite of the current interest in the MICP technique, the mechanical modeling of MICP-treated soils is still limited. In this paper, a constitutive model for MICP-treated sands is presented. The core components of the proposed approach include: a critical state yield surface, sub-loading concepts, a mechanism to account for the MICP-induced cementation enhancement, and an evolution law to consider bonding degradation effects during shearing. The mathematical framework is presented in detail. The model is then applied to analyze recently published experiments involving MICP-treated samples, with different calcite contents, and tested under different conditions (i.e., various confining pressure and loading paths). The model was able to properly capture the main features of MICP-treated sands behavior observed in the tests. It also assisted to interpret the response of this type of soil under different loading conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Al Qabany A, Soga K (2013) Effect of chemical treatment used in MICP on engineering properties of cemented soils. Géotechnique 63(4):331

    Article  Google Scholar 

  2. Al Qabany A, Soga K, Santamarina C (2011) Factors affecting efficiency of microbially induced calcite precipitation. J Geotech Geoenviron Eng 138(8):992–1001

    Article  Google Scholar 

  3. Alonso EE, Gens A, Josa A (1990) A constitutive model for partially saturated soils. Géotechnique 40(3):405–430

    Article  Google Scholar 

  4. Arroyo M, Ciantia M, Castellanza R, Gens A, Nova R (2012) Simulation of cement-improved clay structures with a bonded elasto-plastic model: a practical approach. Comput Geotech 45:140–150

    Article  Google Scholar 

  5. Bachmeier KL, Williams AE, Warmington JR, Bang SS (2002) Urease activity in microbiologically-induced calcite precipitation. J Biotechnol 93(2):171–181

    Article  Google Scholar 

  6. Barkouki T, Martinez B, Mortensen B, Weathers T, De Jong J, Ginn T et al (2011) Forward and inverse bio-geochemical modeling of microbially induced calcite precipitation in half-meter column experiments. Transp Porous Media 90(1):23–39

    Article  Google Scholar 

  7. Benini S, Rypniewski WR, Wilson KS, Miletti S, Ciurli S, Mangani S (1999) A new proposal for urease mechanism based on the crystal structures of the native and inhibited enzyme from Bacillus pasteurii: why urea hydrolysis costs two nickels. Structure 7(2):205–216

    Article  Google Scholar 

  8. Borja RI (2004) Cam-Clay plasticity. Part V: a mathematical framework for three-phase deformation and strain localization analyses of partially saturated porous media. Comput Methods Appl Mech Eng 193(48–51):5301–5338

    Article  MathSciNet  MATH  Google Scholar 

  9. Borja RI (2013) Plasticity: modeling & computation. Springer, Berlin

    Book  MATH  Google Scholar 

  10. Borja RI, Tamagnini C (1996) Critical state model at finite strains. In: Lin YK, Su TC (eds) Proceedings of 11th conference. Engineering mechanics division of the American society of civil engineers, pp 148–151

  11. Borja RI, Tamagnini C (1998) Cam-Clay plasticity Part III: extension of the infinitesimal model to include finite strains. Comput Methods Appl Mech Eng 155(1–2):73–95

    Article  MATH  Google Scholar 

  12. Borja RI, Tamagnini C, Amorosi A (1997) Coupling plasticity and energy-conserving elasticity models for clays. J Geotech Geoenviron Eng 123(10):948–957

    Article  Google Scholar 

  13. Burbank MB, Weaver TJ, Green TL, Williams BC, Crawford RL (2011) Precipitation of calcite by indigenous microorganisms to strengthen liquefiable soils. Geomicrobiol J 28(4):301–312

    Article  Google Scholar 

  14. Burbank M, Weaver T, Lewis R, Williams T, Williams B, Crawford R (2012) Geotechnical tests of sands following bioinduced calcite precipitation catalyzed by indigenous bacteria. J Geotech Geoenviron Eng 139(6):928–936

    Article  Google Scholar 

  15. Carmona JP, Oliveira PJV, Lemos LJ (2016) Biostabilization of a sandy soil using enzymatic calcium carbonate precipitation. Procedia Eng 143:1301–1308

    Article  Google Scholar 

  16. Chang I, Cho G-C (2018) Shear strength behavior and parameters of microbial gellan gum-treated soils: from sand to clay. Acta Geotechnica 1–15. https://doi.org/10.1007/s11440-018-0641-x

  17. Cheng L, Cord-Ruwisch R (2012) In situ soil cementation with ureolytic bacteria by surface percolation. Ecol Eng 42:64–72

    Article  Google Scholar 

  18. Cheng L, Shahin M (2017) Stabilisation of oil-contaminated soils using microbially induced calcite crystals by bacterial flocs. Géotechnique Lett 7(2):146–151

    Article  Google Scholar 

  19. Cheng L, Cord-Ruwisch R, Shahin MA (2013) Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation. Can Geotech J 50(1):81–90

    Article  Google Scholar 

  20. Chou C-W, Seagren EA, Aydilek AH, Lai M (2011) Biocalcification of sand through ureolysis. J Geotech Geoenviron Eng 137(12):1179–1189

    Article  Google Scholar 

  21. Chu J, Ivanov V, Stabnikov V, Bi L (2013) Microbial method for construction of aquaculture pond in sand. Geotechnique 63(10):871–875

    Article  Google Scholar 

  22. Cui M-J, Zheng J-J, Zhang R-J, Lai H-J, Zhang J (2017) Influence of cementation level on the strength behaviour of bio-cemented sand. Acta Geotech 12(5):971–986

    Article  Google Scholar 

  23. Dadda A, Geindreau C, Emeriault F, du Roscoat SR, Garandet A, Sapin L et al (2017) Characterization of microstructural and physical properties changes in biocemented sand using 3D X-ray microtomography. Acta Geotech 12(5):955–970

    Article  Google Scholar 

  24. DeJong JT, Fritzges MB, Nüsslein K (2006) Microbially induced cementation to control sand response to undrained shear. J Geotech Geoenviron Eng 132(11):1381–1392

    Article  Google Scholar 

  25. DeJong JT, Martinez B, Mortensen B, Nelson D, Waller J, Weil M et al (2009) Upscaling of bio-mediated soil improvement. In: Proc 17th int conf on soil mechanics and geotechnical engineering, 5–9 October 2009, Alexandria, Egypt, pp 2300–2303. Millpress Science Publishers, Rotterdam, The Netherlands

  26. DeJong JT, Mortensen BM, Martinez BC, Nelson DC (2010) Bio-mediated soil improvement. Ecol Eng 36(2):197–210

    Article  Google Scholar 

  27. DeJong JT, Soga K, Banwart SA, Whalley WR, Ginn TR, Nelson DC et al (2010) Soil engineering in vivo: harnessing natural biogeochemical systems for sustainable, multi-functional engineering solutions. J R Soc Interface 8(54):1–15. https://doi.org/10.1098/rsif.2010.0270

    Article  Google Scholar 

  28. DeJong JT, Soga K, Kavazanjian E, Burns S, Van Paassen L, Al Qabany A et al (2013) Biogeochemical processes and geotechnical applications: progress, opportunities and challenges. Geotechnique 63(4):287

    Article  Google Scholar 

  29. Desai C (1989) Letter to editor single surface yield and potential function plasticity models: a review. Comput Geotech 7(4):319–333

    Article  Google Scholar 

  30. Desai C, Somasundaram S, Frantziskonis G (1986) A hierarchical approach for constitutive modelling of geologic materials. Int J Numer Anal Meth Geomech 10(3):225–257

    Article  MATH  Google Scholar 

  31. Fauriel S, Laloui L (2012) A bio-chemo-hydro-mechanical model for microbially induced calcite precipitation in soils. Comput Geotech 46:104–120

    Article  Google Scholar 

  32. Feng K, Montoya B (2015) Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading. J Geotech Geoenviron Eng 142(1):04015057

    Article  Google Scholar 

  33. Fujita Y, Taylor JL, Wendt LM, Reed DW, Smith RW (2010) Evaluating the potential of native ureolytic microbes to remediate a 90Sr contaminated environment. Environ Sci Technol 44(19):7652–7658

    Article  Google Scholar 

  34. Gai X, Sánchez M (2017) A geomechanical model for gas hydrate-bearing sediments. Environ Geotech 4(2):143–156

    Article  Google Scholar 

  35. Gens A, Nova R (1993) Conceptional basis for a constitutive model for bonded soils and weak rocks. In: Proc geotechnical engineering of hard soils-soft rocks, Athens, Greece, pp 485 ± 94

  36. Gens A, Potts D (1988) Critical state models in computational geomechanics. Eng Comput 5(3):178–197

    Article  Google Scholar 

  37. Gomez MG, DeJong JT (2017) Engineering properties of bio-cementation improved sandy soils. In: Proceedings of grouting 2017: grouting, drilling, and verification. Honolulu, Hawaii, pp 22–33, 9–12 July 2017. https://doi.org/10.1061/9780784480793.003

  38. Gomez MG, Anderson CM, DeJong JT, Nelson DC, Lau XH (2014) Stimulating in situ soil bacteria for bio-cementation of sands. In: Geo-Congress 2014: geo-characterization and modeling for sustainability, pp 1674–1682

  39. Gomez MG, Martinez BC, DeJong JT, Hunt CE, deVlaming LA, Major DW et al (2015) Field-scale bio-cementation tests to improve sands. Proc Inst Civil Eng Ground Improv 168(3):206–216

    Article  Google Scholar 

  40. Gray DH, Sotir RB (1996) Biotechnical and soil bioengineering slope stabilization: a practical guide for erosion control. Wiley, New York

    Google Scholar 

  41. Hamdan N, Kavazanjian E Jr, Rittmann BE, Karatas I (2017) Carbonate mineral precipitation for soil improvement through microbial denitrification. Geomicrobiol J 34(2):139–146

    Article  Google Scholar 

  42. Hashiguchi K (1977) Elasto-plastic constitutive laws of granular materials, constitutive equations of soils. In: Proc Spec Session 9 of 9th Int ICSMFE, pp 73–82

  43. Hashiguchi K (1989) Subloading surface model in unconventional plasticity. Int J Solids Struct 25(8):917–945

    Article  MATH  Google Scholar 

  44. Ivanov V, Chu J (2008) Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ. Rev Environ Sci Bio/Technol 7(2):139–153

    Article  Google Scholar 

  45. James G, Warwood B, Hiebert R, Cunningham A (2000) Microbial barriers to the spread of pollution. In: Valdes JJ (ed) Bioremediation. Springer, Dordrecht, pp 1–13

    Google Scholar 

  46. Jiang N-J, Soga K (2016) The applicability of microbially induced calcite precipitation (MICP) for internal erosion control in gravel–sand mixtures. Géotechnique 67(1):42–55

    Article  Google Scholar 

  47. Jiang N-J, Soga K, Kuo M (2016) Microbially induced carbonate precipitation for seepage-induced internal erosion control in sand-clay mixtures. J Geotech Geoenviron Eng 143(3):04016100

    Article  Google Scholar 

  48. Lee K, Chan D, Lam K (2004) Constitutive model for cement treated clay in a critical state frame work. Soils Found 44(3):69–77

    Article  Google Scholar 

  49. Li M, Cheng X, Guo H (2013) Heavy metal removal by biomineralization of urease producing bacteria isolated from soil. Int Biodeterior Biodegrad 76:81–85

    Article  Google Scholar 

  50. Lin H, Suleiman MT, Brown DG, Kavazanjian E Jr (2015) Mechanical behavior of sands treated by microbially induced carbonate precipitation. J Geotech Geoenviron Eng 142(2):04015066

    Article  Google Scholar 

  51. Lin JS, Seol Y, Choi JH (2015) An SMP critical state model for methane hydrate-bearing sands. Int J Numer Anal Meth Geomech 39(9):969–987

    Article  Google Scholar 

  52. Manning D (2008) Biological enhancement of soil carbonate precipitation: passive removal of atmospheric CO2. Mineral Mag 72(2):639–649

    Article  Google Scholar 

  53. Martinez BC, DeJong JT (2009) Bio-mediated soil improvement: load transfer mechanisms at the micro-and macro-scales. In: Advances in ground improvement: research to practice in the United States and China, pp 242–251

  54. Martinez B, Barkouki T, DeJong J, Ginn T (2011) Upscaling microbial induced calcite precipitation in 0.5 m columns: experimental and modeling results. In: Proceedings of geo-frontiers 2011: advances in geotechnical engineering. Dallas, Texas, United States, pp 4049–4059, 13–16 March 2011. https://doi.org/10.1061/41165(397)414

  55. Martinez B, DeJong J, Ginn T, Montoya B, Barkouki T, Hunt C et al (2013) Experimental optimization of microbial-induced carbonate precipitation for soil improvement. J Geotech Geoenviron Eng 139(4):587–598

    Article  Google Scholar 

  56. Mitchell JK, Santamarina JC (2005) Biological considerations in geotechnical engineering. J Geotech Geoenviron Eng 131(10):1222–1233

    Article  Google Scholar 

  57. Montoya B, DeJong J (2015) Stress-strain behavior of sands cemented by microbially induced calcite precipitation. J Geotech Geoenviron Eng 141(6):04015019

    Article  Google Scholar 

  58. Mortensen B, DeJong J (2011) Strength and stiffness of MICP treated sand subjected to various stress paths. In: Proceedings of geo-frontiers 2011: advances in geotechnical engineering. Dallas, Texas, United States, pp 4012–4020, 13–16 March 2011. https://doi.org/10.1061/41165(397)410

  59. Mortensen B, Haber M, DeJong J, Caslake L, Nelson D (2011) Effects of environmental factors on microbial induced calcium carbonate precipitation. J Appl Microbiol 111(2):338–349

    Article  Google Scholar 

  60. Nova R (1988) Sinfonietta classica: an exercise on classical soil modelling. In: Proceedings of the international workshop on constitutive equations for granular non-cohesive soils, pp 501–519

  61. Nova R, Castellanza R (1999) The effect of rock weathering on the geostatic stress state. In: Proc, Mechanics of Heterougeneous Materials, J-P Boehler Memorial Symp: Laboratoire Sols, Solides, Structures, Grenoble, France, pp 79–84

  62. Nova R, Castellanza R, Tamagnini C (2003) A constitutive model for bonded geomaterials subject to mechanical and/or chemical degradation. Int J Numer Anal Meth Geomech 27(9):705–732

    Article  MATH  Google Scholar 

  63. Roscoe KH, Burland JB (1968) On the generalized stressstrain behaviour of wet clay. In: Heyman J, Leckie FA (eds) Engineering plasticity. Cambridge University Press, Cambridge, England, pp 535–609

    Google Scholar 

  64. Sánchez M, Gai X, Santamarina JC (2017) A constitutive mechanical model for gas hydrate bearing sediments incorporating inelastic mechanisms. Comput Geotech 84:28–46

    Article  Google Scholar 

  65. Semnani SJ, White JA, Borja RI (2016) Thermoplasticity and strain localization in transversely isotropic materials based on anisotropic critical state plasticity. Int J Numer Anal Meth Geomech 40(18):2423–2449

    Article  Google Scholar 

  66. Sloan SW (1987) Substep** schemes for the numerical integration of elastoplastic stress–strain relations. Int J Numer Meth Eng 24(5):893–911

    Article  MATH  Google Scholar 

  67. Stocks-Fischer S, Galinat JK, Bang SS (1999) Microbiological precipitation of CaCO 3. Soil Biol Biochem 31(11):1563–1571

    Article  Google Scholar 

  68. Tagliaferri F, Waller J, Andò E, Hall SA, Viggiani G, Bésuelle P et al (2011) Observing strain localisation processes in bio-cemented sand using x-ray imaging. Granul Matter 13(3):247–250

    Article  Google Scholar 

  69. Terzis D, Laloui L (2017) On the application of microbially induced calcite precipitation for soils: a multiscale study. Advances in laboratory testing and modelling of soils and shales. Springer, Berlin, pp 388–394

    Google Scholar 

  70. Terzis D, Bernier-Latmani R, Laloui L (2016) Fabric characteristics and mechanical response of bio-improved sand to various treatment conditions. Géotechnique Lett 6(1):50–57

    Article  Google Scholar 

  71. Uchida S, Soga K, Yamamoto K (2012) Critical state soil constitutive model for methane hydrate soil. J Geophys Res Solid Earth 117(B3):1–13

    Article  Google Scholar 

  72. Van Paassen L (2011) Bio-mediated ground improvement: from laboratory experiment to pilot applications. In: Proceedings of geo-frontiers 2011: advances in geotechnical engineering. Dallas, Texas, United States, pp 4049–4059, 13–16 March 2011. https://doi.org/10.1061/41165(397)419

  73. van Paassen LA, Daza CM, Staal M, Sorokin DY, van der Zon W, van Loosdrecht MC (2010) Potential soil reinforcement by biological denitrification. Ecol Eng 36(2):168–175

    Article  Google Scholar 

  74. van Paassen LA, Ghose R, van der Linden TJ, van der Star WR, van Loosdrecht MC (2010) Quantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment. J Geotech Geoenviron Eng 136(12):1721–1728

    Article  Google Scholar 

  75. Van Wijngaarden W, Vermolen F, van Meurs GA, Vuik C (2011) Modelling biogrout: a new ground improvement method based on microbial-induced carbonate precipitation. Transp Porous Media 87(2):397–420

    Article  Google Scholar 

  76. Van Wijngaarden W, Vermolen F, Van Meurs GA, Vuik C (2012) A mathematical model and analytical solution for the fixation of bacteria in Biogrout. Transp Porous Media 92(3):847–866

    Article  MathSciNet  Google Scholar 

  77. Weil MH, DeJong JT, Martinez BC, Mortensen BM (2012) Seismic and resistivity measurements for real-time monitoring of microbially induced calcite precipitation in sand. Geotech Test J 35(2):330–341. https://doi.org/10.1520/GTJ103365

    Article  Google Scholar 

  78. Wheeler S, Sivakumar V (1995) An elasto-plastic critical state framework for unsaturated soil. Géotechnique 45(1):35–53

    Article  Google Scholar 

  79. Zytynski M, Randolph M, Nova R, Wroth C (1978) On modelling the unloading-reloading behaviour of soils. Int J Numer Anal Meth Geomech 2(1):87–93

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Sánchez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gai, X., Sánchez, M. An elastoplastic mechanical constitutive model for microbially mediated cemented soils. Acta Geotech. 14, 709–726 (2019). https://doi.org/10.1007/s11440-018-0721-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-018-0721-y

Keywords

Navigation