Log in

Petrological evidence for isobaric cooling of ultrahigh-temperature pelitic granulites from the Khondalite Belt, North China Craton

华北克拉通孔兹岩带超高温泥质麻粒岩等压降温的岩石学新证据

  • Article
  • Earth Sciences
  • Published:
Science Bulletin

Abstract

The ultrahigh-temperature (UHT) pelitic granulites from the Khondalite Belt, North China Craton (NCC), contain ilmenite in the matrix, which has been partially replaced by rutile. Based on this observation and the growth of biotite by garnet-consuming reaction, the UHT rocks are inferred to have recorded three metamorphic stages: the peak metamorphic stage (M1) and two retrograde metamorphic stages (M2 and M3). The M1 stage is represented by the assemblage of perthite + sillimanite + ilmenite in the matrix, and quartz inclusions bearing (in the cores) garnet porphyroblasts. The M2 stage is defined by rutile-replacing ilmenite and growth of garnet mantles and rims containing acicular sillimanite inclusions, with the garnet + perthite + sillimanite + rutile + ilmenite + quartz assemblage. The M3 stage is recorded by the growth of biotite in the matrix, with the garnet + biotite + perthite + sillimanite + rutile + ilmenite + quartz assemblage. Based on phase equilibrium modeling, an isobaric cooling path is reconstructed, which is consistent with the idea that mantle-derived magma provided the heat for the UHT metamorphism in the Khondalite Belt, NCC.

本文对华北克拉通孔兹岩带集宁地区不含超高温特征指示矿物的超高温泥质麻粒岩进行了电子探针背散射和能谱分析,发现该岩石中的钛铁矿颗粒被金红石交代。结合相**衡计算结果我们发现该样品记录了**等压降温的P–T 轨迹,与地幔岩浆为超高温变质作用提供热源的认识相符。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kelsey DE (2008) On ultrahigh-temperature crustal metamorphism. Gondwana Res 13:1–29

    Article  Google Scholar 

  2. Harley SL (1998) On the occurrence and characterization of ultrahigh-temperature crustal metamorphism. In: Treloar PJ, O’Brien P (eds) What controls metamorphism and metamorphic reactions? Geological Society, London, Special Publications, vol 138, pp 81–107

  3. Kelsey DE, Hand M (2015) On ultrahigh temperature crustal metamorphism: phase equilibria, trace element thermometry, bulk composition, heat sources, timescales and tectonic settings. Geosci Front 6:311–356

    Article  Google Scholar 

  4. Harley SL (2008) Refining the PT records of UHT crustal metamorphism. J Metamorph Geol 26:125–154

    Article  Google Scholar 

  5. Lund MD, Piazolo S, Harley SL (2006) Ultrahigh temperature deformation microstructures in felsic granulites of the Napier Complex, Antarctica. Tectonophysics 427:133–151

    Article  Google Scholar 

  6. Kemp AIS, Shimura T, Hawkesworth CJ (2007) Linking granulites, silicic magmatism, and crustal growth in arcs: ion microprobe (zircon) U–Pb ages from the Hidaka metamorphic belt, Japan. Geology 35:807–810

    Article  Google Scholar 

  7. Sawyer EW, Cesare B, Brown M (2011) When the continental crust melts. Elements 7:229–234

    Article  Google Scholar 

  8. Sizova E, Gerya T, Brown M (2014) Contrasting styles of Phanerozoic and Precambrian continental collision. Gondwana Res 25:522–545

    Article  Google Scholar 

  9. Clark C, Fitzsimons ICW, Healy D et al (2011) How does the continental crust get really hot? Elements 7:235–240

    Article  Google Scholar 

  10. Hyndman RD, Currie CA (2011) Why is the North America Cordillera high? Hot backarcs, thermal isostasy, and mountain belts. Geology 39:783–786

    Article  Google Scholar 

  11. Brown M (1993) P–T–t evolution of orogenic belts and the causes of regional metamorphism. J Geol Soc London 150:227–241

    Article  Google Scholar 

  12. England PC, Richardson RW (1977) The influence of erosion upon the mineral facies of rocks from different metamorphic environments. J Geol Soc London 134:201–213

    Article  Google Scholar 

  13. White RW, Powell R, Holland TJB (2001) Calculation of partial melting equilibria in the system Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O (NCKFMASH). J Metamorph Geol 19:139–153

    Article  Google Scholar 

  14. Wei CJ, Clarke GL (2011) Calculated phase equilibria for MORB compositions: a reappraisal of the metamorphic evolution of lawsonite eclogite. J Metamorph Geol 29:939–952

    Article  Google Scholar 

  15. Korhonen FJ, Clark C, Brown M et al (2014) Taking the temperature of Earth’s hottest crust. Earth Planet Sci Lett 408:341–354

    Article  Google Scholar 

  16. Jiao SJ, Guo JH (2011) Application of the two-feldspar geothermometer to ultrahigh-temperature (UHT) rocks in the Khondalite Belt, North China Craton and its implications. Am Mineral 96:250–260

    Article  Google Scholar 

  17. Santosh M, Sajeev K, Li JH et al (2009) Counterclockwise exhumation of a hot orogen: the Paleoproterozoic ultrahigh-temperature granulites in the North China Craton. Lithos 110:140–152

    Article  Google Scholar 

  18. Liu SJ, Bai X, Li JH et al (2011) Retrograde metamorphism of ultrahigh-temperature granulites from the Khondalite Belt in Inner Mongolia, North China Craton: evidence from aluminous orthopyroxenes. Geol J 46:263–275

    Article  Google Scholar 

  19. Santosh M, Tsunogae T, Li JH et al (2007) Discovery of sapphirine-bearing Mg–Al granulites in the North China Craton: implications for Paleoproterozoic ultrahigh temperature metamorphism. Gondwana Res 11:263–285

    Article  Google Scholar 

  20. Guo JH, Peng P, Chen Y et al (2012) UHT sapphirine granulite metamorphism at 1.93–1.92 Ga caused by gabbronorite intrusions: implications for tectonic evolution of the northern margin of the North China Craton. Precambrian Res 222–223:124–142

    Article  Google Scholar 

  21. Zhao GC (2009) Metamorphic evolution of major tectonic units in the basement of the North China Craton: key issues and discussion. Acta Petrol Sin 25:1772–1792

    Google Scholar 

  22. Zhao GC, Sun M, Wilde SA et al (2005) Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambrian Res 136:177–202

    Article  Google Scholar 

  23. Zhao GC, Cawood PA, Li SZ et al (2012) Amalgamation of the North China Craton: key issues and discussion. Precambrian Res 222–223:55–76

    Article  Google Scholar 

  24. Zhao GC, Cawood PA (2012) Precambrian geology of China. Precambrian Res 222–223:13–54

    Article  Google Scholar 

  25. Guo JH, Zhai MG (2001) Sm–Nd age dating of high-pressure granulites and amphibolite from Sanggan area, North China Craton. Chin Sci Bull 46:106–111

    Article  Google Scholar 

  26. Wu FY, Yang JH, Liu XM et al (2005) Hf isotopes of the 3.8 Ga zircons in eastern Hebei Province, China: implications for early crustal evolution of the North China Craton. Chin Sci Bull 50:2473–2480

    Article  Google Scholar 

  27. Liu F, Guo JH, Lu XP et al (2009) Crustal growth at ~2.5 Ga in the North China Craton: evidence from whole-rock Nd and zircon Hf isotopes in the Huai’an gneiss terrane. Chin Sci Bull 54:4704–4713

    Article  Google Scholar 

  28. Zhai MG, Santosh M (2011) The early Precambrian odyssey of the North China Craton: a synoptic overview. Gondwana Res 20:6–25

    Article  Google Scholar 

  29. Zhao GC (2014) Precambrian evolution of the North China Craton. Elsevier, Amsterdam

    Google Scholar 

  30. Yin CQ, Zhao GC, Guo JH et al (2011) U–Pb and Hf isotopic study of zircons of the Helanshan Complex: constrains on the evolution of the Khondalite Belt in the Western Block of the North China Craton. Lithos 122:25–38

    Article  Google Scholar 

  31. Yin CQ, Zhao GC, Sun M et al (2009) LA-ICP-MS U–Pb zircon ages of the Qianlishan Complex: constrains on the evolution of the Khondalite Belt in the Western Block of the North China Craton. Precambrian Res 174:78–94

    Article  Google Scholar 

  32. Dong CY, Liu DY, Li JJ et al (2007) Palaeoproterozoic Khondalite Belt in the western North China Craton: new evidence from SHRIMP dating and Hf isotope composition of zircons from metamorphic rocks in the Bayan Ul-Helan Mountains area. Chin Sci Bull 52:2984–2994

    Article  Google Scholar 

  33. Lu LZ, ** SQ, Xu XT et al (1992) Petrogenesis and Mineralization of Khondalite Series in Southeastern Inner Mongolia. Jilin Science & Technology Press, Changchun (in Chinese)

    Google Scholar 

  34. Condie KC, Boryta MD, Liu JZ et al (1992) The origin of Khondalites: geochemical evidence from the Archean to Early Proterozoic granulite belt in the North China Craton. Precambrian Res 59:207–223

    Article  Google Scholar 

  35. **a XP, Sun M, Zhao GC et al (2008) Paleoproterozoic crustal growth events in the Western Block of the North China Craton: evidence from detrital zircon Hf and whole rock Sr–Nd isotopes of the Khondalites in the **ing Complex. Am J Sci 308:304–327

    Article  Google Scholar 

  36. Wan YS, Liu DY, Dong CY et al (2009) The Precambrian Khondalite Belt in the Daqingshan area, North China Craton: evidence for multiple metamorphic events in the Palaeoproterozoic era. Geol Soc Lond, Spec Publ 323:73–97

    Article  Google Scholar 

  37. Dan W, Li XH, Guo JH et al (2012) Integrated in situ zircon U–Pb age and Hf–O isotopes for the Helanshan Khondalites in North China Craton: Juvenile crustal materials deposited in active or passive continental margin? Precambrian Res 222–223:143–158

    Article  Google Scholar 

  38. **a XP, Sun M, Zhao GC et al (2006) U–Pb and Hf isotopic study of detrital zircons from the Wulashan Khondalites: constraints on the evolution of the Ordos Terrane, Western Block of the North China Craton. Earth Planet Sci Lett 241:581–593

    Article  Google Scholar 

  39. **a XP, Sun M, Zhao GC et al (2006) LA-ICP-MS U–Pb geochronology of detrital zircons from the **ing Complex, North China Craton and its tectonic significance. Precambrian Res 144:199–212

    Article  Google Scholar 

  40. Santosh M, Liu SJ, Tsunogae T et al (2012) Paleoproterozoic ultrahigh-temperature granulites in the North China Craton: implications for tectonic models on extreme crustal metamorphism. Precambrian Res 222–223:77–106

    Article  Google Scholar 

  41. Cai J, Liu FL, Liu PH et al (2014) Metamorphic P-T path and tectonic implications of pelitic granulites from the Daqingshan Complex of the Khondalite Belt, North China Craton. Precambrian Res 241:161–184

    Article  Google Scholar 

  42. Zhao GC, Guo JH (2012) Precambrian geology of China: preface. Precambrian Res 222–223:1–12

    Article  Google Scholar 

  43. Gou LL, Zhang CL, Zhang LF et al (2014) Precipitation of rutile needles in garnet from sillimanite-bearing pelitic granulite from the Khondalite Belt, North China Craton. Chin Sci Bull 59:4359–4366

    Article  Google Scholar 

  44. Powell R, Holland T, Worley B (1998) Calculating phase diagrams involving solid solutions via non-linear equations, with examples using THERMOCALC. J Metamorph Geol 16:577–588

    Article  Google Scholar 

  45. Holland TJB, Powell R (2011) An improved and extended internally-consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J Metamorph Geol 29:333–383

    Article  Google Scholar 

  46. Holland TJB, Powell R (1998) An internally-consistent thermodynamic dataset for phases of petrological interest. J Metamorph Geol 16:309–344

    Article  Google Scholar 

  47. White RW, Powell R, Holland TJB et al (2014) New mineral activity–composition relations for thermodynamic calculations in metapelitic systems. J Metamorph Geol 32:261–286

    Article  Google Scholar 

  48. Korhonen FJ, Powell R, Stout JH (2012) Stability of sapphirine + quartz in the oxidized rocks of the Wilson Lake terrane, Labrador: calculated equilibria in NCKFMASHTO. J Metamorph Geol 30:21–36

    Article  Google Scholar 

  49. Korhonen FJ, Brown M, Clark C et al (2013) Osumilite–melt interactions in ultrahigh temperature granulites: phase equilibria modelling and implications for the P–T–t evolution of the Eastern Ghats Province, India. J Metamorph Geol 31:881–907

    Article  Google Scholar 

  50. Korhonen FJ, Brown M, Grove M et al (2012) Separating metamorphic events in the Fosdick migmatite-granite complex, West Antarctica. J Metamorph Geol 30:165–191

    Article  Google Scholar 

  51. White RW, Powell R, Halpin JA (2004) Spatially-focussed melt formation in aluminous metapelites from Broken Hill, Australia. J Metamorph Geol 22:825–845

    Article  Google Scholar 

  52. Yin CQ, Zhao GC, Wei CJ et al (2014) Metamorphism and partial melting of high-pressure pelitic granulites from the Qianlishan Complex: constraints on the tectonic evolution of the Khondalite Belt in the North China Craton. Precambrian Res 242:172–186

    Article  Google Scholar 

  53. Jiao SJ, Guo JH, Harley SL et al (2013) New constraints from garnetite on the P–T path of the Khondalite Belt: implications for the tectonic evolution of the North China Craton. J Petrol 54:1725–1758

    Article  Google Scholar 

  54. Wang F, Li XP, Chu H et al (2011) Petrology and metamorphism of Khondalites from the **ing complex, North China Craton. Int Geol Rev 53:212–229

    Article  Google Scholar 

  55. Zhou XW, Zhao GC, Geng YS (2010) Helanshan high-pressure pelitic granulites: petrological evidence for collision event in the Western Block of the North China Craton. Acta Petrol Sin 26:2113–2121 (in Chinese)

    Google Scholar 

  56. Peng P, Guo JH, Windley BF et al (2011) Halaqin volcano-sedimentary succession in the central-northern margin of the North China Craton: products of Late Paleoproterozoic ridge subduction. Precambrian Res 187:165–180

    Article  Google Scholar 

  57. Peng P, Guo JH, Zhai MG et al (2010) Paleoproterozoic gabbronoritic and granitic magmatism in the northern margin of the North China Craton: evidence of crust–mantle interaction. Precambrian Res 183:635–659

    Article  Google Scholar 

  58. Santosh M, Tsunogae T, Ohyama H et al (2008) Carbonic metamorphism at ultrahigh-temperatures: evidence from North China Craton. Earth Planet Sci Lett 266:149–165

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (2012CB416606), the National Natural Science Foundation of China (41421002, 41430209), MOST Special Fund from the State Key Laboratory of Continental Dynamics, the Natural Science Foundation of Education Department of Shaanxi Provincial Government (14JK1733), and Program for Changjiang Scholars and Innovative Research Team in University (IRT1281). Thanks are given to Prof. Guochun Zhao and one anonymous reviewer for their constructive comments that helped to improve the manuscript, Dr. Philip M. Piccoli for his improvements on English writing, Wenqiang Yang for his help during electron microprobe analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longlong Gou.

Electronic supplementary material

Supplementary Fig. 1 Photomicrographs of pelitic granulite sample 03b-40. a sillimanite occurs as acicular inclusions in the rims of garnet, and as rods in the matrix. b biotite in the matrix surrounding garnet. c garnet contain abundant quartz inclusions in the core. Mineral abbreviations: g, garnet; sill, sillimanite; bi, biotite; q, quartz; ksp, K-feldspar. Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 6892 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gou, L., Zhang, C. & Wang, Q. Petrological evidence for isobaric cooling of ultrahigh-temperature pelitic granulites from the Khondalite Belt, North China Craton. Sci. Bull. 60, 1535–1542 (2015). https://doi.org/10.1007/s11434-015-0872-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-015-0872-2

Keywords

关键词

Navigation