Log in

Specially shaped Bessel-like self-accelerating beams along predesigned trajectories

自加速类贝塞尔光束:可沿着预设空间轨道传输的光束

  • Review
  • Physics & Astronomy
  • Published:
Science Bulletin

Abstract

Over the past several years, spatially shaped self-accelerating beams along different trajectories have been studied extensively. Due to their useful properties such as resistance to diffraction, self-healing, and self-bending even in free space, these beams have attracted great attention with many proposed applications. Interestingly, some of these beams could be designed with controllable spatial profiles and thus propagate along various desired trajectories such as parabolic, snake-like, hyperbolic, hyperbolic secant, three-dimensional spiraling, and even self-propelling trajectories. Experimentally, such beams are realized typically by using a spatial light modulator so as to imprint a desired phase distribution on a Gaussian-like input wave front propagating under paraxial or nonparaxial conditions. In this paper, we provide a brief overview of our recent work on specially shaped self-accelerating beams, including Bessel-like, breathing Bessel-like, and vortex Bessel-like beams. In addition, we propose and demonstrate a new type of dynamical Bessel-like beams that can exhibit not only self-accelerating but also self-propelling during propagation. Both theoretical and experimental results are presented along with a brief discussion of potential applications.

摘要

本文综述了多种特殊设计的自加速类贝塞尔光束。这些光束在理论上通过相位调制或叠加等方法产生,并经过实验装置得以验证。其范围覆盖傍轴和大角度自弯曲非傍轴情况,具体包括类贝塞尔光束、自呼吸型类贝塞尔光束、涡旋型类贝塞尔光束、自螺旋型类贝塞尔光束,以及非傍轴类贝塞尔光束。基于这些光束具有无衍射、自加速、自修复、光场中心对称及光束传输轨迹可调控等特点,它们不仅具有重要的基础研究价值, 而且在微粒操控、等离子体、大气科学、生物操控等诸多领域都具有重要的应用前景。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Berry MV, Balazs NL (1979) Nonspreading wave packets. Am J Phys 47:264–267

    Article  Google Scholar 

  2. Greenberger DM (1980) Comment on “Nonspreading wave packets”. Am J Phys 48:256

    Article  Google Scholar 

  3. Siviloglou GA, Christodoulides DN (2007) Accelerating finite energy Airy beams. Opt Lett 32:979–981

    Article  Google Scholar 

  4. Siviloglou GA, Broky J, Dogariu A et al (2007) Observation of accelerating Airy beams. Phys Rev Lett 99:213901

    Article  Google Scholar 

  5. Hu Y, Siviloglou GA, Zhang P et al (2012) Self-accelerating Airy beams: generation, control, and applications. In: Chen Z, Morandotti R (eds) Nonlinear photonics and novel optical phenomena. Springer, New York, pp 1–46

    Chapter  Google Scholar 

  6. Bandres MA, Kaminer I, Mills M et al (2013) Accelerating optical beams. Opt Photonics News 24:30–37

    Article  Google Scholar 

  7. Zhang Z, Hu Y, Zhao JY et al (2013) Research progress and application prospect of Airy beams. Chin Sci Bull 58:3513–3520 (in Chinese)

    Article  Google Scholar 

  8. Baumgartl J, Mazilu M, Dholakia K (2008) Optically mediated particle clearing using Airy wavepackets. Nat Photonics 2:675–678

    Article  Google Scholar 

  9. Zhang P, Zhang Z, Prakash J et al (2011) Trap** and guiding microparticles with morphing autofocusing Airy beams. Opt Lett 36:2883–2885

    Article  Google Scholar 

  10. Polynkin P, Kolesik M, Moloney JV et al (2009) Curved plasma channel generation using ultraintense Airy beams. Science 324:229–232

    Article  Google Scholar 

  11. Zhang P, Wang S, Liu Y et al (2011) Plasmonic Airy beams with dynamically controlled trajectories. Opt Lett 36:3191–3193

    Article  Google Scholar 

  12. Minovich A, Klein AE, Janunts N et al (2011) Generation and near-field imaging of Airy surface plasmons. Phys Rev Lett 107:116802

    Article  Google Scholar 

  13. Li L, Li T, Wang SM et al (2011) Plasmonic Airy beam generated by in-plane diffraction. Phys Rev Lett 107:126804

    Article  Google Scholar 

  14. Voloch-Bloch N, Lereah Y, Lilach Y et al (2013) Generation of electron Airy beams. Nature 494:331–335

    Article  Google Scholar 

  15. Jia S, Vaughan JC, Zhuang X (2014) Isotropic three-dimensional super-resolution imaging with a self-bending point spread function. Nat Photon 8:302–306

    Article  Google Scholar 

  16. Vettenburg T, Dalgarno HI, Nylk J et al (2014) Light-sheet microscopy using an Airy beam. Nat Methods 5:541–544

    Article  Google Scholar 

  17. Kaminer I, Bekenstein R, Nemirovsky J et al (2012) Nondiffracting accelerating wave packets of Maxwell’s equations. Phys Rev Lett 108:163901

    Article  Google Scholar 

  18. Courvoisier F, Mathis A, Froehly L et al (2012) Sending femtosecond pulses in circles: highly nonparaxial accelerating beams. Opt Lett 37:1736–1738

    Article  Google Scholar 

  19. Zhang P, Hu Y, Cannan D et al (2012) Generation of linear and nonlinear nonparaxial accelerating beams. Opt Lett 37:2820–2822

    Article  Google Scholar 

  20. Aleahmad P, Miri MA, Mills MS et al (2012) Fully vectorial accelerating diffraction-free Helmholtz beams. Phys Rev Lett 109:203902

    Article  Google Scholar 

  21. Zhang P, Hu Y, Li T et al (2012) Nonparaxial Mathieu and Weber accelerating beams. Phys Rev Lett 109:193901

    Article  Google Scholar 

  22. Bandres MA, Rodriguez-Lara BM (2013) Nondiffracting accelerating waves: weber waves and parabolic momentum. New J Phys 15:013054

    Article  Google Scholar 

  23. Libster-Hershko A, Epstein I, Arie A (2014) Rapidly accelerating Mathieu and Weber surface plasmon beams. Phys Rev Lett 113:123902

    Article  Google Scholar 

  24. Mathis A, Courvoisier F, Giust R et al (2013) Arbitrary nonparaxial accelerating periodic beams and spherical sha** of light. Opt Lett 38:2218–2220

    Article  Google Scholar 

  25. Morris JE, Cizmár T, Dalgarno HIC et al (2010) Realization of curved Bessel beams: propagation around obstructions. J Opt 12:124002

    Article  Google Scholar 

  26. Jarutis V, Matijosius A, Trapani PD et al (2009) Spiraling zero-order Bessel beam. Opt Lett 34:2129–2131

    Article  Google Scholar 

  27. Rosen J, Yariv A (1995) Snake beam: a paraxial arbitrary focal line. Opt Lett 20:2042–2044

    Article  Google Scholar 

  28. Chremmos ID, Chen Z, Christodoulides DN et al (2012) Bessel-like optical beams with arbitrary trajectories. Opt Lett 37:5003–5005

    Article  Google Scholar 

  29. Zhao J, Zhang P, Deng D et al (2013) Observation of self-accelerating Bessel-like optical beams along arbitrary trajectories. Opt Lett 38:498–500

    Article  Google Scholar 

  30. Chremmos ID, Zhao JY, Christodoulides DN et al (2014) Diffraction-resisting vortex Bessel beams with arbitrary trajectories. In: Conference on lasers and electro-optics: quantum electronics and laser science (QELS_fundamental science), Optical Society of America Technical Digest (online), San Jose, CA USA, p FM3D.1

  31. Zhao JY, Zhang P, Liu JJ et al (2013) Trap** and guiding microparticles with self-accelerating vortex beams. In: Conference on lasers and electro-optics: science and innovations, Optical Society of America Technical Digest (online), San Jose, CA USA, p CM1 M.6

  32. Zhao JY, Zhang P, Deng D et al (2013) Self-accelerating and self-breathing Bessel-like beams along arbitrary trajectories. Chin Opt Lett 11:110701

    Article  Google Scholar 

  33. Deng HC, Yuan LB (2013) Two-dimensional Airy-like beam generation by coupling waveguides. J Opt Soc Am A: 30:1404–1408

    Article  Google Scholar 

  34. Jiang YF, Huang KK, Lu XH (2012) Airy-related beam generated from flat-topped Gaussian beams. J Opt Soc Am A: 29:1412–1416

    Article  Google Scholar 

  35. Zhang YQ, Belić MR, Zheng HB et al (2013) Fresnel diffraction patterns as accelerating beams. Europhys Lett 104:34007

    Article  Google Scholar 

  36. Zhang YQ, Belić MR, Zheng HB et al (2014) Three-dimensional nonparaxial accelerating beams from the transverse Whittaker integral. Europhys Lett 107:34001

    Article  Google Scholar 

  37. Chremmos ID, Efremidis NK (2013) Nonparaxial accelerating Bessel-like beams. Phys Rev A 88:063816

    Article  Google Scholar 

  38. Ren ZJ, Wu Q, Shi YL et al (2014) Production of accelerating quad Airy beams and their optical characteristics. Opt Express 22:15154–15164

    Article  Google Scholar 

  39. Hu Y, Bongiovanni D, Chen ZG et al (2013) Periodic self-accelerating beams by combined phase and amplitude modulation in the Fourier space. Opt Lett 38:3387–3389

    Article  Google Scholar 

  40. Efremidis NK, Christodoulides DN (2010) Abruptly autofocusing waves. Opt Lett 35:4045–4047

    Article  Google Scholar 

  41. Chremmos I, Efremidis NK, Christodoulides DN (2011) Pre-engineered abruptly autofocusing beams. Opt Lett 36:1890–1892

    Article  Google Scholar 

  42. Allen L, Beijersbergen MW, Spreeuw RJC et al (1992) Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A 45:8185–8189

    Article  Google Scholar 

  43. Zhou GQ, Wang XG, Dai CQ et al (2014) Angular momentum density of a Gaussian vortex beam. Sci China Phys Mech Astron 57:619–627

    Article  Google Scholar 

  44. Zhou GQ, Cai YJ, Dai CQ (2013) Hollow vortex Gaussian beams. Sci China Phys Mech Astron 56:896–903

    Article  Google Scholar 

  45. Zhou GQ, Wang XG, Chu XX (2013) Fractional Fourier transform of Lorentz–Gauss vortex beams. Sci China Phys Mech Astron 56:1487–1494

    Article  Google Scholar 

  46. Dai HT, Liu YJ, Luo D et al (2010) Propagation dynamics of an optical vortex imposed on an Airy beam. Opt Lett 35:4075–4077

    Article  Google Scholar 

  47. O’Neil AT, Padgett MJ (2002) Rotational control within optical tweezers by use of a rotating aperture. Opt Lett 27:743–745

    Article  Google Scholar 

  48. Madison KW, Chevy F, Wohlleben W et al (2000) Vortex formation in a stirred Bose–Einstein condensate. Phys Rev Lett 84:806–809

    Article  Google Scholar 

  49. Sasaki K, Koshioka M, Misawa H et al (1992) Optical trap** of a metal particle and a water droplet by a scanning laser beam. Appl Phys Lett 60:807–809

    Article  Google Scholar 

  50. Paterson L, MacDonald MP, Arlt J et al (2001) Controlled rotation of optically trapped microscopic particles. Science 292:912–914

    Article  Google Scholar 

  51. Rotschild C, Saraf M, Barak A et al (2008) Complex nonlinear opto-fluidity. In: Frontiers in optics, Optical Society of America Technical Digest (CD), Rochester, USA, p FME2

  52. Anastassiou C, Pigier C, Segev MC et al (2001) Self-trap** of bright rings. Opt Lett 26:911–913

    Article  Google Scholar 

  53. Zhang P, Huang S, Hu Y et al (2010) Generation and nonlinear self-trap** of optical propelling beams. Opt Lett 35:3129–3131

    Article  Google Scholar 

  54. Zhang P, Hernandez D, Cannan D et al (2012) Trap** and rotating microparticles and bacteria with moiré-based optical propelling beams. Biomed Opt Express 3:1891–1897

    Article  Google Scholar 

  55. Deng D, Gao Y, Zhao J et al (2013) Three-dimensional nonparaxial beams in parabolic rotational coordinates. Opt Lett 38:3934–3936

    Article  Google Scholar 

  56. Gong L, Ren YX, Xue GS et al (2013) Generation of nondiffracting Bessel beam using digital micromirror device. Appl Opt 52:4566–4575

    Article  Google Scholar 

  57. Ornigotti M, Aiello A (2014) Generalized Bessel beams with two indices. Opt Lett 39:5618–5621

    Article  Google Scholar 

  58. Wang F, Zhao C, Dong Y et al (2014) Generation and tight-focusing properties of cylindrical vector circular Airy beams. Appl Phys B 117:905–913

    Article  Google Scholar 

  59. Zhu WG, She WL (2014) Improved nonparaxial accelerating beams due to additional off-axis spiral phases. J Opt Soc Am A 31:2365–2369

    Article  Google Scholar 

  60. Liu ZH, Zhang YX, Zhang Y et al (2014) All-fiber self-accelerating Bessel-like beam generator and its application. Opt Lett 39:6185–6188

    Article  Google Scholar 

  61. Huang C, Lu H (2014) Accelerating propagation properties of misplaced Hermite–Gaussian beams. J Opt Soc Am A 31:1762–1765

    Article  Google Scholar 

  62. Liu X, Zhao D (2014) Optical trap** Rayleigh particles by using focused multi-Gaussian Schell-model beams. Appl Opt 53:3976–3981

    Article  Google Scholar 

  63. Vetter C, Eichelkraut T, Ornigotti M et al (2014) Generalized radially self-accelerating Helicon beams. Phys Rev Lett 113:183901

    Article  Google Scholar 

  64. Schley R, Kaminer I, Greenfield E et al (2014) Loss-proof self-accelerating beams and their use in non-paraxial manipulation of particles’ trajectories. Nat Commun 5:5189

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (61475161 and 11304165), China Scholarship Council, and Natural Science Foundation (NSF) and Air Force Office of Scientific Research (AFOSR) in USA.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daohong Song or Zhigang Chen.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Chremmos, I.D., Zhang, Z. et al. Specially shaped Bessel-like self-accelerating beams along predesigned trajectories. Sci. Bull. 60, 1157–1169 (2015). https://doi.org/10.1007/s11434-015-0792-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-015-0792-1

Keywords

Navigation