Log in

Pressure-triggered stacking dependence of interlayer coupling in bilayer WS2

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Tungsten disulfide (WS2) has been reported to show negligible stacking dependence under ambient conditions, impeding its further explorations on physical properties and potential applications. Here, we realize efficient modulation of interlayer coupling in bilayer WS2 with 3R and 2H stackings by high pressure, and find that the pressure-triggered interlayer coupling and pressure-induced resonant-to-nonresonant transition exhibit prominent stacking dependence, which are experimentally observed for the first time in WS2. Our work may unleash the stacking degree of freedom in designing WS2 devices with tailored properties correlated to interlayer coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

References

  1. J. **a, J. Yan, Z. Wang, Y. He, Y. Gong, W. Chen, T. Sum, Z. Liu, P. Ajayan, and Z. Shen, Nat. Phys. 17, 92 (2021).

    Article  Google Scholar 

  2. S. Pei, Z. Zhang, C. Jiao, Z. Wang, J. Lv, Y. Zhang, M. Huang, Y. Wang, Z. Wang, and J. **a, Rep. Prog. Phys. 2024, doi: https://doi.org/10.1088/1361-6633/ad4fbd.

  3. H. Qiu, Z. Yu, T. Zhao, Q. Zhang, M. Xu, P. Li, T. Li, W. Bao, Y. Chai, S. Chen, Y. Chen, H. M. Cheng, D. Dai, Z. Di, Z. Dong, X. Duan, Y. Feng, Y. Fu, J. Guo, P. Guo, Y. Hao, J. He, X. He, J. Hu, W. Hu, Z. Hu, X. Huang, Z. Huang, A. Imran, Z. Kong, J. Li, Q. Li, W. Li, L. Liao, B. Liu, C. Liu, C. Liu, G. Liu, K. Liu, L. Liu, S. Liu, Y. Liu, D. Lu, L. Ma, F. Miao, Z. Ni, J. Ning, A. Pan, T. L. Ren, H. Shu, L. Sun, Y. Sun, Q. Tao, Z. A. Tian, D. Wang, H. Wang, H. Wang, J. Wang, J. Wang, W. Wang, X. Wang, Y. Wang, Y. Wang, Z. Wang, Y. Wen, H. Wu, H. Wu, J. Wu, Y. Wu, L. **a, B. **ang, L. **ng, Q. **ong, X. **ong, J. Xu, T. Xu, Y. Xu, L. Yang, Y. Yang, Y. Yang, L. Ye, Y. Ye, B. Yu, T. Yu, H. Zeng, G. Zhang, H. Zhang, J. Zhang, K. Zhang, T. Zhang, X. Zhang, Y. Zhang, C. Zhao, Y. Zhao, T. Zheng, P. Zhou, S. Zhou, Y. Zhu, D. Yang, Y. Shi, H. Wang, and X. Wang, Sci. China Inf. Sci. 67, 160400 (2024).

    Article  Google Scholar 

  4. Z. Wang, B. Xu, S. Pei, J. Zhu, T. Wen, C. Jiao, J. Li, M. Zhang, and J. **a, Sci. China Inf. Sci. 65, 211401 (2022).

    Article  Google Scholar 

  5. K. Seyler, P. Rivera, H. Yu, N. Wilson, E. Ray, D. Mandrus, J. Yan, W. Yao, and X. Xu, Nature 567, 66 (2019).

    Article  ADS  Google Scholar 

  6. D. Chen, Z. Lian, X. Huang, Y. Su, M. Rashetnia, L. Ma, L. Yan, M. Blei, L. **ang, T. Taniguchi, K. Watanabe, S. Tongay, D. Smirnov, Z. Wang, C. Zhang, Y. Cui, and S. Shi, Nat. Phys. 18, 1171 (2022).

    Article  Google Scholar 

  7. D. Chen, Z. Lian, X. Huang, Y. Su, M. Rashetnia, L. Yan, M. Blei, T. Taniguchi, K. Watanabe, S. Tongay, Z. Wang, C. Zhang, Y. Cui, and S. Shi, Nat. Commun. 13, 4810 (2022).

    Article  ADS  Google Scholar 

  8. A. Gandi, and U. Schwingenschlögl, Chem. Mater. 26, 6628 (2014).

    Article  Google Scholar 

  9. P. Kumar, N. Verma, N. Goyal, J. Biswas, S. Lodha, C. Nandi, and V. Balakrishnan, Nanoscale 10, 3320 (2018).

    Article  Google Scholar 

  10. D. Ovchinnikov, A. Allain, Y. Huang, D. Dumcenco, and A. Kis, ACS Nano 8, 8174 (2014).

    Article  Google Scholar 

  11. W. Hsu, J. Quan, C. Wang, L. Lu, M. Campbell, W. Chang, L. Li, X. Li, and C. Shih, 2D Mater. 6, 025028 (2019).

    Article  Google Scholar 

  12. B. Zhu, X. Chen, and X. Cui, Sci. Rep. 5, 9218 (2015).

    Article  ADS  Google Scholar 

  13. X. Xu, W. Yao, D. **ao, and T. Heinz, Nat. Phys. 10, 343 (2014).

    Article  Google Scholar 

  14. X. Zhang, X. Qiao, W. Shi, J. Wu, D. Jiang, and P. Tan, Chem. Soc. Rev. 44, 2757 (2015).

    Article  Google Scholar 

  15. N. Huo, Y. Li, J. Kang, R. Li, Q. **a, and J. Li, Appl. Phys. Lett. 104, 202406 (2014).

    Article  ADS  Google Scholar 

  16. V. Ortiz Jimenez, Y. Pham, M. Liu, F. Zhang, Z. Yu, V. Kalappattil, B. Muchharla, T. Eggers, D. Duong, M. Terrones, and M. Phan, Adv. Elect. Mater. 7, 2100030 (2021).

    Article  Google Scholar 

  17. J. Luxa, O. Jankovský, D. Sedmidubský, R. Medlin, M. Maryško, M. Pumera, and Z. Sofer, Nanoscale 8, 1960 (2016).

    Article  ADS  Google Scholar 

  18. Z. Yang, D. Gao, J. Zhang, Q. Xu, S. Shi, K. Tao, and D. Xue, Nanoscale 7, 650 (2014).

    Article  ADS  Google Scholar 

  19. W. Zhang, H. Gao, C. Deng, T. Lv, S. Hu, H. Wu, S. Xue, Y. Tao, L. Deng, and W. **ong, Nanoscale 13, 11497 (2021).

    Article  Google Scholar 

  20. Q. Wang, Q. Zhang, X. Luo, J. Wang, R. Zhu, Q. Liang, L. Zhang, J. Yong, C. Yu Wong, G. Eda, J. Smet, and A. Wee, ACS Appl. Mater. Interfaces 12, 45235 (2020).

    Article  Google Scholar 

  21. J. **ao, Z. Ye, Y. Wang, H. Zhu, Y. Wang, and X. Zhang, Light Sci. Appl. 4, e366 (2015).

    Article  ADS  Google Scholar 

  22. Y. Chen, R. Tamming, K. Chen, Z. Zhang, F. Liu, Y. Zhang, J. Hodgkiss, R. Blaikie, B. Ding, and M. Qiu, Nat. Commun. 12, 4332 (2021).

    Article  ADS  Google Scholar 

  23. W. Yan, L. Meng, Z. Meng, Y. Weng, L. Kang, and X. Li, J. Phys. Chem. C 123, 30684 (2019).

    Article  Google Scholar 

  24. S. Huang, L. Liang, X. Ling, A. Puretzky, D. Geohegan, B. Sumpter, J. Kong, V. Meunier, and M. Dresselhaus, Nano Lett. 16, 1435 (2016).

    Article  ADS  Google Scholar 

  25. J. Yan, J. **a, X. Wang, L. Liu, J. Kuo, B. Tay, S. Chen, W. Zhou, Z. Liu, and Z. Shen, Nano Lett. 15, 8155 (2015).

    Article  ADS  Google Scholar 

  26. G. Shao, X. Xue, X. Liu, D. Zhang, Y. **, Y. Wu, B. You, Y. Lin, S. Li, K. Suenaga, X. Wang, A. Pan, H. Li, J. Hong, Y. Feng, and S. Liu, Chem. Mater. 32, 9721 (2020).

    Article  Google Scholar 

  27. A. Barbosa, N. Figueroa, M. Giarola, G. Mariotto, and F. FreireJr., Mater. Chem. Phys. 243, 122599 (2020).

    Article  Google Scholar 

  28. X. Hong, J. Kim, S. F. Shi, Y. Zhang, C. **, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, Nat. Nanotech. 9, 682 (2014).

    Article  ADS  Google Scholar 

  29. Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Nature 556, 43 (2018).

    Article  ADS  Google Scholar 

  30. D. Zhong, K. Seyler, X. Linpeng, N. Wilson, T. Taniguchi, K. Watanabe, M. McGuire, K. Fu, D. **ao, W. Yao, and X. Xu, Nat. Nanotechnol. 15, 187 (2020).

    Article  ADS  Google Scholar 

  31. A. Jayaraman, Rev. Mod. Phys. 55, 65 (1983).

    Article  ADS  Google Scholar 

  32. X. Ma, S. Fu, J. Ding, M. Liu, A. Bian, F. Hong, J. Sun, X. Zhang, X. Yu, and D. He, Nano Lett. 21, 8035 (2021).

    Article  ADS  Google Scholar 

  33. A. Nayak, Z. Yuan, B. Cao, J. Liu, J. Wu, S. T. Moran, T. Li, D. Akinwande, C. **, and J. F. Lin, ACS Nano 9, 9117 (2015).

    Article  Google Scholar 

  34. S. Pei, Z. Wang, and J. **a, ACS Nano 16, 11498 (2022).

    Article  Google Scholar 

  35. S. Pei, Z. Wang, and J. **a, Mater. Des. 213, 110363 (2022).

    Article  Google Scholar 

  36. S. Pei, Q. Deng, Z. Wang, and J. **a, Chin. J. High Pressure Phys. 35, 030101 (2021).

    Google Scholar 

  37. C. Jiao, S. Pei, S. Wu, Z. Wang, and J. **a, Rep. Prog. Phys. 86, 114503 (2023).

    Article  ADS  Google Scholar 

  38. J. **a, D. Li, J. Zhou, P. Yu, J. Lin, J. Kuo, H. Li, Z. Liu, J. Yan, and Z. Shen, Small 13, 1701887 (2017).

    Article  Google Scholar 

  39. N. Bandaru, R. S. Kumar, J. Baker, O. Tschauner, T. Hartmann, Y. Zhao, and R. Venkat, Int. J. Mod. Phys. B 28, 1450168 (2014).

    Article  ADS  Google Scholar 

  40. X. Li, J. Li, K. Wang, X. Wang, S. Wang, X. Chu, M. Xu, X. Fang, Z. Wei, Y. Zhai, and B. Zou, Appl. Phys. Lett. 109, 242101 (2016).

    Article  ADS  Google Scholar 

  41. M. Yankowitz, K. Watanabe, T. Taniguchi, P. San-Jose, and B. LeRoy, Nat. Commun. 7, 1 (2016).

    Article  Google Scholar 

  42. J. **a, J. Yan, and Z. Shen, FlatChem 4, 1 (2017).

    Article  Google Scholar 

  43. T. Wen, J. Li, Q. Deng, C. Jiao, M. Zhang, S. Wu, L. Lin, W. Huang, J. **a, and Z. Wang, Small 18, 2108028 (2022).

    Article  Google Scholar 

  44. T. Wen, J. Li, M. Zhang, C. Jiao, S. Pei, Z. Wang, and J. **a, ACS Photon. 9, 3557 (2022).

    Article  Google Scholar 

  45. T. Wen, M. Zhang, J. Li, C. Jiao, S. Pei, Z. Wang, and J. **a, Nanoscale Horiz. 8, 516 (2023).

    Article  ADS  Google Scholar 

  46. Q.-H. Tan, Y.-J. Sun, X.-L. Liu, Y. Zhao, Q. **ong, P.-H. Tan, and J. Zhang, 2D Mater. 4, 031007 (2017).

    Article  Google Scholar 

  47. Q. Tan, Y. Sun, X. Liu, K. Xu, Y. Gao, S. Ren, P. Tan, and J. Zhang, Nano Res. 14, 239 (2021).

    Article  ADS  Google Scholar 

  48. J. Yang, J. Lee, and H. Cheong, FlatChem 3, 64 (2017).

    Article  Google Scholar 

  49. R. Elliott, Phys. Rev. 108, 1384 (1957).

    Article  ADS  Google Scholar 

  50. M. Brotons-Gisbert, A. Segura, R. Robles, E. Canadell, P. Ordejón, and J. Sanchez-Royo, Phys. Rev. Mater. 2, 054602 (2018).

    Article  Google Scholar 

  51. A. Arora, T. Deilmann, T. Reichenauer, J. Kern, S. Michaelis de Vasconcellos, M. Rohlfing, and R. Bratschitsch, Phys. Rev. Lett. 123, 167401 (2019).

    Article  ADS  Google Scholar 

  52. P. Tan, W. Han, W. Zhao, Z. Wu, K. Chang, H. Wang, Y. Wang, N. Bonini, N. Marzari, N. Pugno, G. Savini, A. Lombardo, and A. Ferrari, Nat. Mater. 11, 294 (2012).

    Article  ADS  Google Scholar 

  53. M. Hanfland, H. Beister, and K. Syassen, Phys. Rev. B 39, 12598 (1989).

    Article  ADS  Google Scholar 

  54. A. Molina-Sánchez, and L. Wirtz, Phys. Rev. B 84, 155413 (2011).

    Article  ADS  Google Scholar 

  55. Q. H. Tan, Y. M. Li, J. M. Lai, Y. J. Sun, Z. Zhang, F. Song, C. Robert, X. Marie, W. Gao, P. H. Tan, and J. Zhang, Nat. Commun. 14, 88 (2023).

    Article  ADS  Google Scholar 

  56. A. Puretzky, L. Liang, X. Li, K. **ao, B. Sumpter, V. Meunier, and D. Geohegan, ACS Nano 10, 2736 (2016).

    Article  Google Scholar 

  57. B. Peng, H. Zhang, H. Shao, Y. Xu, X. Zhang, and H. Zhu, Annalen der Physik 528, 504 (2016).

    Article  ADS  Google Scholar 

  58. L. Liang, J. Zhang, B. Sumpter, Q. Tan, P. Tan, and V. Meunier, ACS Nano 11, 11777 (2017).

    Article  Google Scholar 

  59. L. Sang, M. Liao, M. Sumiya, X. Yang, and B. Shen, Fund. Res. 3, 403 (2023).

    Google Scholar 

  60. T. Meier, F. Trybel, S. Khandarkhaeva, D. Laniel, T. Ishii, A. Aslandukova, N. Dubrovinskaia, and L. Dubrovinsky, Nat. Commun. 13, 3042 (2022).

    Article  ADS  Google Scholar 

  61. L. Dubrovinsky, S. Khandarkhaeva, T. Fedotenko, D. Laniel, M. Bykov, C. Giacobbe, E. Lawrence Bright, P. Sedmak, S. Chariton, V. Prakapenka, A. Ponomareva, E. Smirnova, M. Belov, F. Tasnádi, N. Shulumba, F. Trybel, I. Abrikosov, and N. Dubrovinskaia, Nature 605, 274 (2022).

    Article  ADS  Google Scholar 

  62. Z. Li, Y. Wang, M. Ma, H. Ma, W. Hu, X. Zhang, Z. Zhuge, S. Zhang, K. Luo, Y. Gao, L. Sun, A. Soldatov, Y. Wu, B. Liu, B. Li, P. Ying, Y. Zhang, B. Xu, J. He, D. Yu, Z. Liu, Z. Zhao, Y. Yue, Y. Tian, and X. Li, Nat. Mater. 22, 42 (2023).

    Article  ADS  Google Scholar 

  63. K. Luo, B. Liu, W. Hu, X. Dong, Y. Wang, Q. Huang, Y. Gao, L. Sun, Z. Zhao, Y. Wu, Y. Zhang, M. Ma, X. Zhou, J. He, D. Yu, Z. Liu, B. Xu, and Y. Tian, Nature 607, 486 (2022).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zenghui Wang or Juan **a.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. T2325007, 62250073, U21A20459, 62004026, 61774029, 62104029, 12104086, 62150052, U23A20570, and 51902346), the Sichuan Science and Technology Program (Grant Nos. 2021JDTD0028, 2023NSFSC1334, 24NSFSC5852, and 24NSFSC5853), and the Science and Technology Innovation Program of Hunan Province (Grant No. 2021RC3021).

Supporting Information

The supporting information is available online at http://phys.scichina.com and https://springer.longhoe.net. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Materials for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Jiao, C., Pei, S. et al. Pressure-triggered stacking dependence of interlayer coupling in bilayer WS2. Sci. China Phys. Mech. Astron. 67, 288211 (2024). https://doi.org/10.1007/s11433-024-2376-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-024-2376-9

Navigation