Log in

A cost-efficient quantum access network with qubit-based synchronization

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Quantum key distribution (QKD) is a physical layer encryption technique that enables two distant parties to exchange secure keys with information-theoretic security. In the last two decades, QKD has transitioned from laboratory research to real-world applications, including multi-user quantum access networks (QANs). This network structure allows users to share a single-photon detector at a network node through time-division multiplexing, thereby significantly reducing the network cost. However, current QAN implementations require additional hardware for auxiliary tasks such as time synchronization. To address this issue, we propose a cost-efficient QAN that uses qubit-based synchronization. In this approach, the transmitted qubits facilitate time synchronization, eliminating the need for additional synchronization hardware. We tested our scheme by implementing a network for two users and successfully achieved average secure key rates of 53.84 kbps and 71.90 kbps for each user over a 50-km commercial fiber spool. In addition, we investigated the capacity of the access network under cross-talk and loss conditions. The simulation results demonstrate that this scheme can support a QAN with 64 users with key rates up to 1070 bps. Our work provides a feasible and cost-effective way to implement a multi-user QKD network, further promoting the widespread application of QKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. C. H. Bennett, and G. Brassard, in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (IEEE, New York, Bangalore, 1984), pp. 175–179.

    Google Scholar 

  2. H. K. Lo, and H. F. Chau, Science 283, 2050 (1999), ar**v: quant-ph/9803006.

    Article  ADS  Google Scholar 

  3. P. W. Shor, and J. Preskill, Phys. Rev. Lett. 85, 441 (2000), ar**v: quant-ph/0003004.

    Article  ADS  Google Scholar 

  4. D. Gottesman, H. K. Lo, N. Lütkenhaus, and J. Preskill, QIC 4, 325 (2004).

    Article  Google Scholar 

  5. H. K. Lo, X. Ma, and K. Chen, Phys. Rev. Lett. 94, 230504 (2005), ar**v: quant-ph/0411004.

    Article  ADS  Google Scholar 

  6. X. B. Wang, Phys. Rev. Lett. 94, 230503 (2005), ar**v: quant-ph/0410075.

    Article  ADS  Google Scholar 

  7. H. K. Lo, M. Curty, and B. Qi, Phys. Rev. Lett. 108, 130503 (2012), ar**v: 1109.1473.

    Article  ADS  Google Scholar 

  8. M. Lucamarini, Z. L. Yuan, J. F. Dynes, and A. J. Shields, Nature 557, 400 (2018), ar**v: 1811.06826.

    Article  ADS  Google Scholar 

  9. X. Ma, P. Zeng, and H. Zhou, Phys. Rev. X 8, 031043 (2018), ar**v: 1805.05538.

    Google Scholar 

  10. X. B. Wang, Z. W. Yu, and X. L. Hu, Phys. Rev. A 98, 062323 (2018).

    Article  ADS  Google Scholar 

  11. P. Zeng, H. Zhou, W. Wu, and X. Ma, Nat. Commun. 13, 3903 (2022), ar**v: 2201.04300.

    Article  ADS  Google Scholar 

  12. A. Boaron, G. Boso, D. Rusca, C. Vulliez, C. Autebert, M. Caloz, M. Perrenoud, G. Gras, F. Bussiéres, M. J. Li, D. Nolan, A. Martin, and H. Zbinden, Phys. Rev. Lett. 121, 190502 (2018), ar**v: 1807.03222.

    Article  ADS  Google Scholar 

  13. F. Grünenfelder, A. Boaron, D. Rusca, A. Martin, and H. Zbinden, Appl. Phys. Lett. 117, 144003 (2020), ar**v: 2007.15447.

    Article  ADS  Google Scholar 

  14. K. Wei, W. Li, H. Tan, Y. Li, H. Min, W. J. Zhang, H. Li, L. You, Z. Wang, X. Jiang, T. Y. Chen, S. K. Liao, C. Z. Peng, F. Xu, and J. W. Pan, Phys. Rev. X 10, 031030 (2020), ar**v: 1911.00690.

    Google Scholar 

  15. T. K. Paraïso, T. Roger, D. G. Marangon, I. De Marco, M. Sanzaro, R. I. Woodward, J. F. Dynes, Z. Yuan, and A. J. Shields, Nat. Photon. 15, 850 (2021).

    Article  ADS  Google Scholar 

  16. L. Zhou, J. Lin, Y. **g, and Z. Yuan, Nat. Commun. 14, 928 (2023), ar**v: 2208.09347.

    Article  ADS  Google Scholar 

  17. F. Grünenfelder, A. Boaron, G. V. Resta, M. Perrenoud, D. Rusca, C. Barreiro, R. Houlmann, R. Sax, L. Stasi, S. El-Khoury, E. Hänggi, N. Bosshard, F. Bussiéres, and H. Zbinden, Nat. Photon. 17, 422 (2023), ar**v: 2210.16126.

    Article  ADS  Google Scholar 

  18. W. Li, L. Zhang, H. Tan, Y. Lu, S. K. Liao, J. Huang, H. Li, Z. Wang, H. K. Mao, B. Yan, Q. Li, Y. Liu, Q. Zhang, C. Z. Peng, L. You, F. Xu, and J. W. Pan, Nat. Photon. 17, 416 (2023), ar**v: 2307.02364.

    Article  ADS  Google Scholar 

  19. Y. Liu, W. J. Zhang, C. Jiang, J. P. Chen, C. Zhang, W. X. Pan, D. Ma, H. Dong, J. M. **ong, C. J. Zhang, H. Li, R. C. Wang, J. Wu, T. Y. Chen, L. You, X. B. Wang, Q. Zhang, and J. W. Pan, Phys. Rev. Lett. 130, 210801 (2023), ar**v: 2303.15795.

    Article  ADS  Google Scholar 

  20. Z. Chen, X. Wang, S. Yu, Z. Li, and H. Guo, npj Quant. Inf. 9, 28 (2023), ar**v: 2207.04991.

    Article  ADS  Google Scholar 

  21. T. Y. Chen, J. Wang, H. Liang, W. Y. Liu, Y. Liu, X. Jiang, Y. Wang, X. Wan, W. Q. Cai, L. Ju, L. K. Chen, L. J. Wang, Y. Gao, K. Chen, C. Z. Peng, Z. B. Chen, and J. W. Pan, Opt. Express 18, 27217 (2010), ar**v: 1008.1508.

    Article  ADS  Google Scholar 

  22. M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J. B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, and A. Zeilinger, Opt. Express 19, 10387 (2011), ar**v: 1103.3566.

    Article  ADS  Google Scholar 

  23. D. Bunandar, A. Lentine, C. Lee, H. Cai, C. M. Long, N. Boynton, N. Martinez, C. DeRose, C. Chen, M. Grein, D. Trotter, A. Starbuck, A. Pomerene, S. Hamilton, F. N. C. Wong, R. Camacho, P. Davids, J. Urayama, and D. Englund, Phys. Rev. X 8, 021009 (2018), ar**v: 1708.00434.

    Google Scholar 

  24. M. Avesani, L. Calderaro, G. Foletto, C. Agnesi, F. Picciariello, F. B. L. Santagiustina, A. Scriminich, A. Stanco, F. Vedovato, M. Zahidy, G. Vallone, and P. Villoresi, Opt. Lett. 46, 2848 (2021), ar**v: 2012.08457.

    Article  ADS  Google Scholar 

  25. T. Y. Chen, X. Jiang, S. B. Tang, L. Zhou, X. Yuan, H. Zhou, J. Wang, Y. Liu, L. K. Chen, W. Y. Liu, H. F. Zhang, K. Cui, H. Liang, X. G. Li, Y. Mao, L. J. Wang, S. B. Feng, Q. Chen, Q. Zhang, L. Li, N. L. Liu, C. Z. Peng, X. Ma, Y. Zhao, and J. W. Pan, npj Quant. Inf. 7, 134 (2021), ar**v: 2109.04736.

    Article  ADS  Google Scholar 

  26. Y. A. Chen, Q. Zhang, T. Y. Chen, W. Q. Cai, S. K. Liao, J. Zhang, K. Chen, J. Yin, J. G. Ren, Z. Chen, S. L. Han, Q. Yu, K. Liang, F. Zhou, X. Yuan, M. S. Zhao, T. Y. Wang, X. Jiang, L. Zhang, W. Y. Liu, Y. Li, Q. Shen, Y. Cao, C. Y. Lu, R. Shu, J. Y. Wang, L. Li, N. L. Liu, F. Xu, X. B. Wang, C. Z. Peng, and J. W. Pan, Nature 589, 214 (2021).

    Article  ADS  Google Scholar 

  27. X. Zhong, W. Wang, R. Mandil, H. K. Lo, and L. Qian, Phys. Rev. Appl. 17, 014025 (2022), ar**v: 2106.07768.

    Article  ADS  Google Scholar 

  28. G. J. Fan-Yuan, F. Y. Lu, S. Wang, Z. Q. Yin, D. Y. He, W. Chen, Z. Zhou, Z. H. Wang, J. Teng, G. C. Guo, and Z. F. Han, Optica 9, 812 (2022).

    Article  ADS  Google Scholar 

  29. I. Choi, R. J. Young, and P. D. Townsend, Opt. Express 18, 9600 (2010).

    Article  ADS  Google Scholar 

  30. B. Fröhlich, J. F. Dynes, M. Lucamarini, A. W. Sharpe, Z. Yuan, and A. J. Shields, Nature 501, 69 (2013), ar**v: 1309.6431.

    Article  ADS  Google Scholar 

  31. B. Fröhlich, J. F. Dynes, M. Lucamarini, A. W. Sharpe, S. W. B. Tam, Z. Yuan, and A. J. Shields, Sci. Rep. 5, 18121 (2016), ar**v: 1509.03496.

    Article  ADS  Google Scholar 

  32. A. P. Liu, X. S. Yu, Q. C. Zhu, Y. L. Zhao, A. Nag, and J. Zhang, in 20th International Conference on Optical Communications and Networks (ICOCN) (IEEE, New York, 2022), pp. 1–3.

    Google Scholar 

  33. X. Wang, Z. Chen, Z. Li, D. Qi, S. Yu, and H. Guo, Opt. Lett. 48, 3327 (2023), ar**v: 2305.01966.

    Article  ADS  Google Scholar 

  34. W. Sun, L. J. Wang, X. X. Sun, Y. Mao, H. L. Yin, B. X. Wang, T. Y. Chen, and J. W. Pan, J. Appl. Phys. 123, 043105 (2018), ar**v: 1604.07578.

    Article  ADS  Google Scholar 

  35. B. X. Wang, S. B. Tang, Y. Mao, W. Xu, M. Cheng, J. Zhang, T. Y. Chen, and J. W. Pan, Opt. Express 29, 38582 (2021), ar**v: 2110.14126.

    Article  ADS  Google Scholar 

  36. Y. Huang, T. Shen, X. Wang, Z. Chen, B. Xu, S. Yu, and H. Guo, Phys. Rev. Appl. 16, 064051 (2021), ar**v: 2107.01800.

    Article  ADS  Google Scholar 

  37. S. Sauge, L. Lydersen, A. Anisimov, J. Skaar, and V. Makarov, Opt. Express 19, 23590 (2011).

    Article  ADS  Google Scholar 

  38. Y. J. Qian, D. Y. He, S. Wang, W. Chen, Z. Q. Yin, G. C. Guo, and Z. F. Han, Phys. Rev. Appl. 10, 064062 (2018), ar**v: 1909.10001.

    Article  ADS  Google Scholar 

  39. K. Wei, W. Zhang, Y. L. Tang, L. You, and F. Xu, Phys. Rev. A 100, 022325 (2019), ar**v: 1909.05509.

    Article  ADS  Google Scholar 

  40. Y. L. Tang, H. L. Yin, Q. Zhao, H. Liu, X. X. Sun, M. Q. Huang, W. J. Zhang, S. J. Chen, L. Zhang, L. X. You, Z. Wang, Y. Liu, C. Y. Lu, X. Jiang, X. Ma, Q. Zhang, T. Y. Chen, and J. W. Pan, Phys. Rev. X 6, 011024 (2016), ar**v: 1509.08389.

    Google Scholar 

  41. H. L. Yin, W. L. Wang, Y. L. Tang, Q. Zhao, H. Liu, X. X. Sun, W. J. Zhang, H. Li, I. V. Puthoor, L. X. You, E. Andersson, Z. Wang, Y. Liu, X. Jiang, X. Ma, Q. Zhang, M. Curty, T. Y. Chen, and J. W. Pan, Phys. Rev. A 95, 042338 (2017), ar**v: 1703.01021.

    Article  ADS  Google Scholar 

  42. W. Wang, F. Xu, and H. K. Lo, Phys. Rev. X 9, 041012 (2019).

    Google Scholar 

  43. B. Fröhlich, J. F. Dynes, M. Lucamarini, A. W. Sharpe, S. W. B. Tam, Z. Yuan, and A. J. Shields, Sci. Rep. 5, 18121 (2016), ar**v: 1509.03496.

    Article  ADS  Google Scholar 

  44. C. H. Park, M. K. Woo, B. K. Park, Y. S. Kim, H. Baek, S. W. Lee, H. T. Lim, S. W. Jeon, H. Jung, S. Kim, and S. W. Han, npj Quant. Inf. 8, 48 (2022).

    Article  ADS  Google Scholar 

  45. J. F. Dynes, A. Wonfor, W. W. S. Tam, A. W. Sharpe, R. Takahashi, M. Lucamarini, A. Plews, Z. L. Yuan, A. R. Dixon, J. Cho, Y. Tanizawa, J. P. Elbers, H. Greißer, I. H. White, R. V. Penty, and A. J. Shields, npj Quant. Inf. 5, 101 (2019).

    Article  ADS  Google Scholar 

  46. Y. Chen, C. Huang, S. Huang, Z. Zhang, and K. Wei, ar**v: 2308.13154.

  47. L. Calderaro, A. Stanco, C. Agnesi, M. Avesani, D. Dequal, P. Villoresi, and G. Vallone, Phys. Rev. Appl. 13, 054041 (2020), ar**v: 1909.12050.

    Article  ADS  Google Scholar 

  48. D. Ma, X. Liu, C. Huang, H. Chen, H. Lin, and K. Wei, Opt. Lett. 46, 2152 (2021), ar**v: 2104.07442.

    Article  ADS  Google Scholar 

  49. J. Q. Geng, G. J. Fan-Yuan, S. Wang, Q. F. Zhang, Y. Y. Hu, W. Chen, Z. Q. Yin, D. Y. He, G. C. Guo, and Z. F. Han, Opt. Lett. 46, 2573 (2021).

    Article  ADS  Google Scholar 

  50. C. Ma, W. D. Sacher, Z. Tang, J. C. Mikkelsen, Y. Yang, F. Xu, T. Thiessen, H. K. Lo, and J. K. S. Poon, Optica 3, 1274 (2016), ar**v: 1606.04407.

    Article  ADS  Google Scholar 

  51. Q. Liu, Y. Huang, Y. Du, Z. Zhao, M. Geng, Z. Zhang, and K. Wei, Entropy 24, 1334 (2022).

    Article  ADS  Google Scholar 

  52. R. Sax, A. Boaron, G. Boso, S. Atzeni, A. Crespi, F. Grünenfelder, D. Rusca, A. Al-Saadi, D. Bronzi, S. Kupijai, H. Rhee, R. Osellame, and H. Zbinden, Photon. Res. 11, 1007 (2023).

    Article  Google Scholar 

  53. K. Wei, X. Hu, Y. Du, X. Hua, Z. Zhao, Y. Chen, C. Huang, and X. **ao, Photon. Res. 11, 1364 (2023).

    Article  Google Scholar 

  54. Y. Du, X. Zhu, X. Hua, Z. Zhao, X. Hu, Y. Qian, X. **ao, and K. Wei, Chip 2, 100039 (2023).

    Article  Google Scholar 

  55. K. J. Wei, H. Q. Ma, and J. H. Yang, Opt. Express 21, 16663 (2013).

    Article  ADS  Google Scholar 

  56. A. Shen, X. Y. Cao, Y. Wang, Y. Fu, J. Gu, W. B. Liu, C. X. Weng, H. L. Yin, and Z. B. Chen, Sci. China-Phys. Mech. Astron. 66, 260311 (2023), ar**v: 2303.14622.

    Article  ADS  Google Scholar 

  57. Y. B. Sheng, and L. Zhou, Sci. China-Phys. Mech. Astron. 66, 260331 (2023).

    Article  ADS  Google Scholar 

  58. B. Liu, S. **a, D. **ao, W. Huang, B. Xu, and Y. Li, Sci. China-Phys. Mech. Astron. 65, 240312 (2022).

    Article  ADS  Google Scholar 

  59. X. Liu, Z. Li, D. Luo, C. Huang, D. Ma, M. Geng, J. Wang, Z. Zhang, and K. Wei, Sci. China-Phys. Mech. Astron. 64, 120311 (2021).

    Article  ADS  Google Scholar 

  60. X. Liu, D. Luo, G. Lin, Z. Chen, C. Huang, S. Li, C. Zhang, Z. Zhang, and K. Wei, Sci. China-Phys. Mech. Astron. 65, 120311 (2022).

    Article  ADS  Google Scholar 

  61. G. L. Roberts, M. Lucamarini, Z. L. Yuan, J. F. Dynes, L. C. Comandar, A. W. Sharpe, A. J. Shields, M. Curty, I. V. Puthoor, and E. Andersson, Nat. Commun. 8, 1098 (2017), ar**v: 1703.00493.

    Article  ADS  Google Scholar 

  62. H. L. Yin, Y. Fu, C. L. Li, C. X. Weng, B. H. Li, J. Gu, Y. S. Lu, S. Huang, and Z. B. Chen, Natl. Sci. Rev. 10, nwac228 (2023).

    Article  ADS  Google Scholar 

  63. D. D. Li, S. Gao, G. C. Li, L. Xue, L. W. Wang, C. B. Lu, Y. **ang, Z. Y. Zhao, L. C. Yan, Z. Y. Chen, G. Yu, and J. H. Liu, Opt. Express 26, 22793 (2018).

    Article  ADS  Google Scholar 

  64. F. Berra, C. Agnesi, A. Stanco, M. Avesani, M. Kuklewski, D. Matter, G. Vallone, and P. Villoresi, Appl. Opt. 62, 7994 (2023), ar**v: 2306.17603.

    Article  ADS  Google Scholar 

  65. M. Fujiwara, A. Tanaka, S. Takahashi, K. Yoshino, Y. Nambu, A. Tajima, S. Miki, T. Yamashita, Z. Wang, A. Tomita, and M. Sasaki, Opt. Express 19, 19562 (2011).

    Article  ADS  Google Scholar 

  66. F. Marsili, F. Najafi, E. Dauler, R. J. Molnar, and K. K. Berggren, Appl. Phys. Lett. 100, 112601 (2012), ar**v: 1203.0065.

    Article  ADS  Google Scholar 

  67. V. Burenkov, H. Xu, B. Qi, R. H. Hadfield, and H. K. Lo, J. Appl. Phys. 113, 213102 (2013), ar**v: 1306.3749.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke** Wei.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 62171144, and 11905065), the Guangxi Science Foundation (Grant Nos. 2021GXNSFAA220011, and 2021AC19384), the Open Fund of Institute of Pervasive Computing (IPOC) (Bei**g University of Posts and Telecommunications) (Grant No. IPOC2021A02), and the Innovation Project of Guangxi Graduate Education (Grant No. YCSW2022040).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C., Chen, Y., Luo, T. et al. A cost-efficient quantum access network with qubit-based synchronization. Sci. China Phys. Mech. Astron. 67, 240312 (2024). https://doi.org/10.1007/s11433-023-2302-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2302-8

Navigation