Log in

Absence of metallicity and bias-dependent resistivity in low-carrier-density EuCd2As2

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

EuCd2As2 was theoretically predicted to be a minimal model of Weyl semimetals with a single pair of Weyl points in the ferromagnet state. However, the heavily p-doped EuCd2As2 crystals in previous experiments prevent direct identification of the semimetal hypothesis. Here, we present a comprehensive magneto-transport study of high-quality EuCd2As2 crystals with ultralow bulk carrier density (1013 cm−3). In contrast to the general expectation of a Weyl semimetal phase, EuCd2As2 shows insulating behavior in both antiferromagnetic and ferromagnetic states as well as surface-dominated conduction from band bending. Moreover, the application of a dc bias current can dramatically modulate the resistance by over one order of magnitude, and induce a periodic resistance oscillation due to the geometric resonance. Such nonlinear transport results from the high nonequilibrium state induced by an electrical field near the band edge. Our results suggest an insulating phase in EuCd2As2 and put a strong constraint on the underlying mechanism of anomalous transport properties in this system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Z. Hasan, and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).

    Article  ADS  CAS  Google Scholar 

  2. A. Bansil, H. Lin, and T. Das, Rev. Mod. Phys. 88, 021004 (2016).

    Article  ADS  Google Scholar 

  3. X. L. Qi, and S. C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).

    Article  ADS  CAS  Google Scholar 

  4. C. K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, Rev. Mod. Phys. 88, 035005 (2016).

    Article  ADS  Google Scholar 

  5. N. P. Armitage, E. J. Mele, and A. Vishwanath, Rev. Mod. Phys. 90, 015001 (2018).

    Article  ADS  CAS  Google Scholar 

  6. B. A. Bernevig, C. Felser, and H. Beidenkopf, Nature 603, 41 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. C. Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L. L. Wang, Z. Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z. Fang, S. C. Zhang, K. He, Y. Wang, L. Lu, X. C. Ma, and Q. K. Xue, Science 340, 167 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Y. Deng, Y. Yu, M. Z. Shi, Z. Guo, Z. Xu, J. Wang, X. H. Chen, and Y. Zhang, Science 367, 895 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. D. Zhang, M. Shi, T. Zhu, D. **ng, H. Zhang, and J. Wang, Phys. Rev. Lett. 122, 206401 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. G. Xu, H. Weng, Z. Wang, X. Dai, and Z. Fang, Phys. Rev. Lett. 107, 186806 (2011).

    Article  ADS  PubMed  Google Scholar 

  11. R. S. K. Mong, A. M. Essin, and J. E. Moore, Phys. Rev. B 81, 245209 (2010).

    Article  ADS  Google Scholar 

  12. M. Hirschberger, S. Kushwaha, Z. Wang, Q. Gibson, S. Liang, C. A. Belvin, B. A. Bernevig, R. J. Cava, and N. P. Ong, Nat. Mater. 15, 1161 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. K. Kuroda, T. Tomita, M. T. Suzuki, C. Bareille, A. A. Nugroho, P. Goswami, M. Ochi, M. Ikhlas, M. Nakayama, S. Akebi, R. Noguchi, R. Ishii, N. Inami, K. Ono, H. Kumigashira, A. Varykhalov, T. Muro, T. Koretsune, R. Arita, S. Shin, T. Kondo, and S. Nakatsuji, Nat. Mater. 16, 1090 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. X. He, Y. Li, H. Zeng, Z. Zhu, S. Tan, Y. Zhang, C. Cao, and Y. Luo, Sci. China-Phys. Mech. Astron. 66, 237011 (2023).

    Article  ADS  CAS  Google Scholar 

  15. L. Zheng, K. Luo, Z. Sun, D. Zhao, J. Li, D. Song, S. Li, B. Kang, L. Nie, M. Shan, Z. Wu, Y. Zhou, X. Dai, H. Weng, R. Yu, T. Wu, and X. Chen, Sci. China-Phys. Mech. Astron. 66, 117011 (2023).

    Article  ADS  CAS  Google Scholar 

  16. L. L. Wang, N. H. Jo, B. Kuthanazhi, Y. Wu, R. J. McQueeney, A. Kaminski, and P. C. Canfield, Phys. Rev. B 99, 245147 (2019).

    Article  ADS  CAS  Google Scholar 

  17. J. **ong, S. K. Kushwaha, T. Liang, J. W. Krizan, M. Hirschberger, W. Wang, R. J. Cava, and N. P. Ong, Science 350, 413 (2015).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  18. A. A. Burkov, Nat. Mater. 15, 1145 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. K. Manna, Y. Sun, L. Muechler, J. Kübler, and C. Felser, Nat. Rev. Mater. 3, 244 (2018).

    Article  ADS  CAS  Google Scholar 

  20. J. Huang, L. Wang, and D. X. Yao, Sci. China-Phys. Mech. Astron. 65, 266811 (2022).

    Article  ADS  Google Scholar 

  21. Z. Rao, S. Tian, S. Gao, Q. Hu, W. Fan, J. Huang, C. Tang, Y. Huang, H. Lei, Y. Sun, T. Qian, and H. Ding, Sci. China-Phys. Mech. Astron. 65, 257013 (2022).

    Article  ADS  Google Scholar 

  22. A. A. Burkov, Phys. Rev. Lett. 113, 187202 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Z. Gao, M. Hua, H. Zhang, and X. Zhang, Phys. Rev. B 93, 205109 (2016).

    Article  ADS  Google Scholar 

  24. B. J. Yang, and N. Nagaosa, Nat. Commun. 5, 4898 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. J. Z. Ma, S. M. Nie, C. J. Yi, J. Jandke, T. Shang, M. Y. Yao, M. Naamneh, L. Q. Yan, Y. Sun, A. Chikina, V. N. Strocov, M. Medarde, M. Song, Y. M. **ong, G. Xu, W. Wulfhekel, J. Mesot, M. Reticcioli, C. Franchini, C. Mudry, M. Müller, Y. G. Shi, T. Qian, H. Ding, and M. Shi, Sci. Adv. 5, eaaw4718 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Y. Xu, L. Das, J. Z. Ma, C. J. Yi, S. M. Nie, Y. G. Shi, A. Tiwari, S. S. Tsirkin, T. Neupert, M. Medarde, M. Shi, J. Chang, and T. Shang, Phys. Rev. Lett. 126, 076602 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. H. P. Wang, D. S. Wu, Y. G. Shi, and N. L. Wang, Phys. Rev. B 94, 045112 (2016).

    Article  ADS  Google Scholar 

  28. M. C. Rahn, J. R. Soh, S. Francoual, L. S. I. Veiga, J. Strempfer, J. Mardegan, D. Y. Yan, Y. F. Guo, Y. G. Shi, and A. T. Boothroyd, Phys. Rev. B 97, 214422 (2018).

    Article  ADS  CAS  Google Scholar 

  29. G. Hua, S. Nie, Z. Song, R. Yu, G. Xu, and K. Yao, Phys. Rev. B 98, 201116 (2018).

    Article  ADS  Google Scholar 

  30. Y. Sun, Y. Li, S. Li, C. Yi, H. Deng, X. Du, L. Liu, C. Zhu, Y. Li, Z. Wang, H. Mao, Y. Shi, and R. Wu, J. Rare Earths 40, 1606 (2022).

    Article  CAS  Google Scholar 

  31. Y. Wang, C. Li, T. Miao, S. Zhang, Y. Li, L. Zhou, M. Yang, C. Yin, Y. Cai, C. Song, H. Luo, H. Chen, H. Mao, L. Zhao, H. Deng, Y. Sun, C. Zhu, F. Zhang, F. Yang, Z. Wang, S. Zhang, Q. Peng, S. Pan, Y. Shi, H. Weng, T. **ang, Z. Xu, and X. J. Zhou, Phys. Rev. B 106, 085134 (2022).

    Article  ADS  CAS  Google Scholar 

  32. X. Cao, J. X. Yu, P. Leng, C. Yi, X. Chen, Y. Yang, S. Liu, L. Kong, Z. Li, X. Dong, Y. Shi, M. Bibes, R. Peng, J. Zang, and F. **u, Phys. Rev. Res. 4, 023100 (2022).

    Article  CAS  Google Scholar 

  33. J. R. Soh, F. de Juan, M. G. Vergniory, N. B. M. Schröter, M. C. Rahn, D. Y. Yan, J. Jiang, M. Bristow, P. A. Reiss, J. N. Blandy, Y. F. Guo, Y. G. Shi, T. K. Kim, A. McCollam, S. H. Simon, Y. Chen, A. I. Coldea, and A. T. Boothroyd, Phys. Rev. B 100, 201102 (2019).

    Article  ADS  CAS  Google Scholar 

  34. Y. Wang, C. Li, Y. Li, X. Zhou, W. Wu, R. Yu, J. Zhao, C. Yin, Y. Shi, C. **, J. Luo, L. Zhao, T. **ang, G. Liu, and X. J. Zhou, Chin. Phys. Lett. 38, 077201 (2021).

    Article  ADS  CAS  Google Scholar 

  35. N. H. Jo, B. Kuthanazhi, Y. Wu, E. Timmons, T. H. Kim, L. Zhou, L. L. Wang, B. G. Ueland, A. Palasyuk, D. H. Ryan, R. J. McQueeney, K. Lee, B. Schrunk, A. A. Burkov, R. Prozorov, S. L. Bud’ko, A. Kaminski, and P. C. Canfield, Phys. Rev. B 101, 140402 (2020).

    Article  ADS  CAS  Google Scholar 

  36. E. Gati, S. L. Bud’ko, L. L. Wang, A. Valadkhani, R. Gupta, B. Kuthanazhi, L. **ang, J. M. Wilde, A. Sapkota, Z. Guguchia, R. Khasanov, R. Valentí, and P. C. Canfield, Phys. Rev. B 104, 155124 (2021).

    Article  ADS  CAS  Google Scholar 

  37. Z. Yu, X. Chen, W. **a, N. Wang, X. Lv, X. Liu, H. Su, Z. Li, D. Wu, W. Wu, Z. Liu, J. Zhao, M. Li, S. Li, X. Li, Z. Dong, C. Zhou, L. Zhang, X. Wang, N. Yu, Z. Zou, J. Luo, J. Cheng, L. Wang, Z. Zhong, and Y. Guo, ar**v: 2202.06016.

  38. C. Niu, N. Mao, X. Hu, B. Huang, and Y. Dai, Phys. Rev. B 99, 235119 (2019).

    Article  ADS  CAS  Google Scholar 

  39. J. R. Soh, E. Schierle, D. Y. Yan, H. Su, D. Prabhakaran, E. Weschke, Y. F. Guo, Y. G. Shi, and A. T. Boothroyd, Phys. Rev. B 102, 014408 (2020).

    Article  ADS  CAS  Google Scholar 

  40. K. M. Taddei, L. Yin, L. D. Sanjeewa, Y. Li, J. **ng, C. dela Cruz, D. Phelan, A. S. Sefat, and D. S. Parker, Phys. Rev. B 105, L140401 (2022).

    Article  ADS  CAS  Google Scholar 

  41. B. Li, W. Sun, X. Zou, X. Li, B. Huang, Y. Dai, and C. Niu, New J. Phys. 24, 053038 (2022).

    Article  ADS  Google Scholar 

  42. S. Ishiwata, Y. Shiomi, J. S. Lee, M. S. Bahramy, T. Suzuki, M. Uchida, R. Arita, Y. Taguchi, and Y. Tokura, Nat. Mater. 12, 512 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. K. Hess, Solid-State Electron. 21, 123 (1978).

    Article  ADS  CAS  Google Scholar 

  44. P. Monçeau, N. P. Ong, A. M. Portis, A. Meerschaut, and J. Rouxel, Phys. Rev. Lett. 37, 602 (1976).

    Article  ADS  Google Scholar 

  45. I. A. Dmitriev, A. D. Mirlin, D. G. Polyakov, and M. A. Zudov, Rev. Mod. Phys. 84, 1709 (2012).

    Article  ADS  CAS  Google Scholar 

  46. C. L. Yang, J. Zhang, R. R. Du, J. A. Simmons, and J. L. Reno, Phys. Rev. Lett. 89, 076801 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. N. C. Mamani, G. M. Gusev, O. E. Raichev, T. E. Lamas, and A. K. Bakarov, Phys. Rev. B 80, 075308 (2009).

    Article  ADS  Google Scholar 

  48. A. I. Berdyugin, N. **n, H. Gao, S. Slizovskiy, Z. Dong, S. Bhattacharjee, P. Kumaravadivel, S. Xu, L. A. Ponomarenko, M. Holwill, D. A. Bandurin, M. Kim, Y. Cao, M. T. Greenaway, K. S. Novoselov, I. V. Grigorieva, K. Watanabe, T. Taniguchi, V. I. Fal’ko, L. S. Levitov, R. K. Kumar, and A. K. Geim, Science 375, 430 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Z. Zhang, and J. T. Yates Jr., Chem. Rev. 112, 5520 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. D. Santos-Cottin, I. Mohelský, J. Wyzula, F. Le Mardelé, I. Kapon, S. Nasrallah, N. Barišić, I. Živković, J. R. Soh, F. Guo, K. Rigaux, M. Puppin, J. H. Dil, B. Gudac, Z. Rukelj, M. Novak, A. B. Kuzmenko, C. C. Homes, T. Dietl, M. Orlita, and A. Akrap, Phys. Rev. Lett. 131, 186704 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **glei Zhang, Yanfeng Guo or Cheng Zhang.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

We thank **angyu Cao and Pengliang Leng for stimulating discussions. Cheng Zhang was sponsored by the National Key R&D Program of China (Grant No. 2022YFA1405700), the National Natural Science Foundation of China (Grant Nos. 12174069, and 92365104), and the Shuguang Program supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission. Yanfeng Guo was supported by the Double First-Class Initiative Fund of ShanghaiTech University, and the open project from Bei**g National Laboratory for Condensed Matter Physics. **glei Zhang was supported by the National Key R&D Program of China (Grant No. 2022YFA1602603), and the National Natural Science Foundation of China (Grant No. 12122411). Wu Shi was supported by the National Natural Science Foundation of China (Grant No. 12274090), and the Natural Science Foundation of Shanghai (Grant No. 22ZR1406300).

Supporting Information

The supporting information is available online at http://phys.scichina.com and https://springer.longhoe.net. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Ma, J., Yuan, J. et al. Absence of metallicity and bias-dependent resistivity in low-carrier-density EuCd2As2. Sci. China Phys. Mech. Astron. 67, 247311 (2024). https://doi.org/10.1007/s11433-023-2283-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2283-0

Navigation