Log in

Quantum properties of fermionic fields in multi-event horizon spacetime

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We investigated the properties of quantum entanglement and mutual information in the multi-event horizon Schwarzschild-de Sitter (SdS) spacetime for massless Dirac fields. For the first time, we obtained the expression for the evolutions of the quantum state near the black hole event horizon (BEH) and cosmological event horizon (CEH) in the SdS spacetime. Under the Nariai limit, the physically accessible entanglement and mutual information are maximized, and the physically inaccessible correlations are zero. With the increase in temperature of either horizon, the physically accessible correlations experience degradation. Notably, the initial state remains entangled and can be utilized in entanglement-based quantum information processing tasks, which differs from the scalar field case. Furthermore, the degradation of physically accessible correlations is more pronounced for small-mass black holes. In contrast, the physically inaccessible correlations separated by the CEH monotonically increase with the radiation temperature, and such correlations are not decisively influenced by the effect of particle creation at the BEH. Moreover, a similar phenomenon is observed for the inaccessible correlations separated by the BEH. This result differs from the single event spacetime, in which the physically inaccessible entanglement is a monotonic function of the Hawking temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. W. Hawking, Commun. Math. Phys. 43, 199 (1975).

    Article  ADS  Google Scholar 

  2. S. Bose, A. Mazumdar, G. W. Morley, H. Ulbricht, M. Toroš, M. Paternostro, A. A. Geraci, P. F. Barker, M. S. Kim, and G. Milburn, Phys. Rev. Lett. 119, 240401 (2017), ar**v: 1707.06050.

    Article  MathSciNet  PubMed  ADS  Google Scholar 

  3. C. Marletto, and V. Vedral, Phys. Rev. Lett. 119, 240402 (2017), ar**v: 1707.06036.

    Article  CAS  PubMed  ADS  Google Scholar 

  4. A. Aspect, P. Grangier, and G. Roger, Phys. Rev. Lett. 47, 460 (1981).

    Article  CAS  ADS  Google Scholar 

  5. A. Aspect, J. Dalibard, and G. Roger, Phys. Rev. Lett. 49, 1804 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  6. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, Phys. Rev. Lett. 70, 1895 (1993).

    Article  MathSciNet  CAS  PubMed  ADS  Google Scholar 

  7. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, Nature 390, 575 (1997), ar**v: 1901.11004.

    Article  CAS  ADS  Google Scholar 

  8. V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. Lett. 96, 010401 (2006), ar**v: quant-ph/0509179.

    Article  MathSciNet  PubMed  ADS  Google Scholar 

  9. D. Boschi, S. Branca, F. de Martini, L. Hardy, and S. Popescu, Phys. Rev. Lett. 80, 1121 (1998), ar**v: quant-ph/9710013.

    Article  MathSciNet  CAS  ADS  Google Scholar 

  10. J. W. Pan, C. Simon, C. Brukner, and A. Zeilinger, Nature 410, 1067 (2001), ar**v: quant-ph/0012026.

    Article  CAS  PubMed  ADS  Google Scholar 

  11. S. W. Hawking, Phys. Rev. D 14, 2460 (1976).

    Article  MathSciNet  ADS  Google Scholar 

  12. A. Almheiri, D. Marolf, J. Polchinski, and J. Sully, J. High Energ. Phys. 2013, 062 (2013).

    Article  Google Scholar 

  13. A. Peres, and D. R. Terno, Rev. Mod. Phys. 76, 93 (2004), ar**v: quant-ph/0212023.

    Article  ADS  Google Scholar 

  14. I. Fuentes-Schuller, and R. B. Mann, Phys. Rev. Lett. 95, 120404 (2005), ar**v: quant-ph/0410172.

    Article  MathSciNet  CAS  PubMed  ADS  Google Scholar 

  15. X. Zhou, S. Chen, and J. **g, Sci. China-Phys. Mech. Astron. 65, 250411 (2022), ar**v: 2110.03291.

    Article  ADS  Google Scholar 

  16. J. Wang, J. **g, and H. Fan, Phys. Rev. D 90, 025032 (2014), ar**v: 1408.0080.

    Article  ADS  Google Scholar 

  17. E. Martín-Martínez, L. J. Garay, and J. León, Phys. Rev. D 82, 064006 (2010), ar**v: 1006.1394.

    Article  ADS  Google Scholar 

  18. Q. Liu, C. Wen, Z. Tian, J. **g, and J. Wang, Phys. Rev. A 105, 062428 (2022), ar**v: 2104.02314.

    Article  CAS  ADS  Google Scholar 

  19. S. M. Wu, C. X. Wang, D. D. Liu, X. L. Huang, and H. S. Zeng, J. High Energ. Phys. 2023, 115 (2023).

    Article  Google Scholar 

  20. J. Wang, and J. **g, Phys. Rev. A 82, 032324 (2010), ar**v: 1005.2865.

    Article  MathSciNet  ADS  Google Scholar 

  21. S. Bhattacharya, S. Chakrabortty, and S. Goyal, Phys. Rev. D 101, 085016 (2020), ar**v: 1912.12272.

    Article  MathSciNet  CAS  ADS  Google Scholar 

  22. P. M. Alsing, I. Fuentes-Schuller, R. B. Mann, and T. E. Tessier, Phys. Rev. A 74, 032326 (2006), ar**v: quant-ph/0603269.

    Article  ADS  Google Scholar 

  23. S. Xu, X. Song, J. Shi, and L. Ye, Phys. Rev. D 89, 065022 (2014).

    Article  ADS  Google Scholar 

  24. P. C. W. Davies, J. Phys. A-Math. Gen. 8, 609 (1975).

    Article  ADS  Google Scholar 

  25. A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P. M. Garnavich, R. L. Gilliland, C. J. Hogan, S. Jha, R. P. Kirshner, B. Leibundgut, M. M. Phillips, D. Reiss, B. P. Schmidt, R. A. Schommer, R. C. Smith, J. Spyromilio, C. Stubbs, N. B. Suntzeff, and J. Tonry, Astron. J. 116, 1009 (1998), ar**v: astro-ph/9805201.

    Article  ADS  Google Scholar 

  26. S. Perlmutter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filippenko, T. Matheson, A. S. Fruchter, N. Panagia, H. J. M. Newberg, W. J. Couch, and T. S. C. Project, Astrophys. J. 517, 565 (1999), ar**v: astro-ph/9812133.

    Article  ADS  Google Scholar 

  27. V. Sahni, and A. Starobinsky, Int. J. Mod. Phys. D 09, 373 (2000), ar**v: astro-ph/9904398.

    Article  ADS  Google Scholar 

  28. T. Padmanabhan, Phys. Rep. 380, 235 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  29. L.-F. Wang, S.-J. **, J.-F. Zhang, and X. Zhang, Sci. China-Phys. Mech. Astron. 65, 210411 (2022), ar**v: 2101.11882.

    Article  ADS  Google Scholar 

  30. G. W. Gibbons, and S. W. Hawking, Phys. Rev. D 15, 2738 (1977).

    Article  MathSciNet  ADS  Google Scholar 

  31. R. Bousso, and S. W. Hawking, Phys. Rev. D 57, 2436 (1998), ar**v: hep-th/9709224.

    Article  MathSciNet  CAS  ADS  Google Scholar 

  32. G. Doménech, and S. Pi, Sci. China-Phys. Mech. Astron. 65, 230411 (2022), ar**v: 2010.03976.

    Article  ADS  Google Scholar 

  33. T. R. Choudhury, and T. Padmanabhan, Gen. Relativ. Gravit. 39, 1789 (2007), ar**v: gr-qc/0404091.

    Article  ADS  Google Scholar 

  34. S. Bhattacharya, and A. Lahiri, Eur. Phys. J. C 73, 2673 (2013), ar**v: 1301.4532.

    Article  ADS  Google Scholar 

  35. Y. Qiu, and J. Traschen, Class. Quantum Grav. 37, 135012 (2020), ar**v: 1908.02737.

    Article  CAS  ADS  Google Scholar 

  36. P. Kanti, T. Pappas, and N. Pappas, Phys. Rev. D 90, 124077 (2014), ar**v: 1409.8664.

    Article  ADS  Google Scholar 

  37. S. A. Major, Phys. Rev. D 105, 104050 (2022), ar**v: 2203.00085.

    Article  CAS  ADS  Google Scholar 

  38. S. Bhattacharya, Phys. Rev. D 98, 125013 (2018), ar**v: 1810.13260.

    Article  MathSciNet  CAS  ADS  Google Scholar 

  39. S. Bhattacharya, and N. Joshi, Phys. Rev. D 105, 065007 (2022), ar**v: 2105.02026.

    Article  CAS  ADS  Google Scholar 

  40. A. Gomberoff, and C. Teitelboim, Phys. Rev. D 67, 104024 (2003), ar**v: hep-th/0302204.

    Article  MathSciNet  ADS  Google Scholar 

  41. Y. Sekiwa, Phys. Rev. D 73, 084009 (2006), ar**v: hep-th/0602269.

    Article  MathSciNet  ADS  Google Scholar 

  42. A. Aragón, R. Bécar, P. A. González, and Y. Vásquez, Phys. Rev. D 103, 064006 (2021), ar**v: 2009.09436.

    Article  ADS  Google Scholar 

  43. X. Zhang, M. Wang, and J. **g, Sci. China-Phys. Mech. Astron. 66, 100411 (2023), ar**v: 2307.10856.

    Article  ADS  Google Scholar 

  44. W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998), ar**v: quant-ph/9709029.

    Article  CAS  ADS  Google Scholar 

  45. V. Coffman, J. Kundu, and W. K. Wootters, Phys. Rev. A 61, 052306 (2000), ar**v: quant-ph/9907047.

    Article  ADS  Google Scholar 

  46. R. S. Ingarden, A. Kossakowski, and M. Ohya, Information Dynamics and Open Systems-Classical and Quantum Approach (Kluwer Academic, Dordrecht, 1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cuihong Wen or Jieci Wang.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12122504, 12374408, and 12205133), and the Natural Science Foundation of Hunan Province (Grant No. 2023JJ30384).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Wu, SM., Wen, C. et al. Quantum properties of fermionic fields in multi-event horizon spacetime. Sci. China Phys. Mech. Astron. 66, 120413 (2023). https://doi.org/10.1007/s11433-023-2246-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2246-8

Navigation