Log in

Theoretical study on magnetocaloric effect and its electric-field regulation in CrI3/metal heterostructure

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The extraordinary properties of a heterostructure by stacking atom-thick van der Waals (vdW) magnets have been extensively studied. However, the magnetocaloric effect (MCE) of heterostructures that are based on monolayer magnets remains to be explored. Herein, we deliberate MCE of vdW heterostructure composed of a monolayer CrI3 and metal atomic layers (Ag, Hf, Au, and Pb). It is revealed that heterostructure engineering by introducing metal substrate can improve MCE of CrI3, particularly boosting relative cooling power to 471.72 µJ m−2 and adiabatic temperature change to 2.1 K at 5 T for CrI3/Hf. This improved MCE is ascribed to the enhancement of magnetic moment and intralayer exchange coupling in CrI3 due to the CrI3/metal heterointerface induced charge transfer. Electric field is further found to tune MCE of CrI3 in heterostructures and could shift the peak temperature by around 10 K in CrI3/Hf, thus manipulating the working temperature window of MCE. These theoretical results could enrich the research on low-dimensional magnetocaloric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. O. Gutfleisch, M. A. Willard, E. Brück, C. H. Chen, S. G. Sankar, and J. P. Liu, Adv. Mater. 23, 821 (2011).

    Article  Google Scholar 

  2. T. Gottschall, K. P. Skokov, M. Fries, A. Taubel, I. Radulov, F. Scheibel, D. Benke, S. Riegg, and O. Gutfleisch, Adv. Energy Mater. 9, 1901322 (2019).

    Article  Google Scholar 

  3. A. Kitanovski, Adv. Energy Mater. 10, 1903741 (2020).

    Article  Google Scholar 

  4. J. Shen, Z. J. Mo, Z. X. Li, X. Q. Gao, H. Sun, H. C. **e, and R. S. Liu, Sci. Sin.-Phys. Mech. Astron. 51, 067502 (2021).

    Article  Google Scholar 

  5. H. Hou, S. Qian, and I. Takeuchi, Nat. Rev. Mater. 7, 633 (2022).

    Article  ADS  Google Scholar 

  6. T. Hashimoto, T. Numasawa, M. Shino, and T. Okada, Cryogenics 21, 647 (1981).

    Article  ADS  Google Scholar 

  7. N. A. Zarkevich, and V. I. Zverev, Crystals 10, 815 (2020).

    Article  Google Scholar 

  8. V. K. Pecharsky, and K. A. Gschneidner Jr., Phys. Rev. Lett. 78, 4494 (1997).

    Article  ADS  Google Scholar 

  9. Q. Luo, D. Q. Zhao, M. X. Pan, and W. H. Wang, Appl. Phys. Lett. 89, 081914 (2006).

    Article  ADS  Google Scholar 

  10. X. X. Zhang, J. Tejada, Y. **n, G. F. Sun, K. W. Wong, and X. Bohigas, Appl. Phys. Lett. 69, 3596 (2010).

    Article  ADS  Google Scholar 

  11. V. Franco, J. S. Blázquez, J. J. Ipus, J. Y. Law, L. M. Moreno-Ramírez, and A. Conde, Prog. Mater. Sci. 93, 112 (2018).

    Article  Google Scholar 

  12. Z. G. Zheng, X. C. Zhong, K. P. Su, H. Y. Yu, Z. W. Liu, and D. C. Zeng, Sci. China-Phys. Mech. Astron. 54, 1267 (2011).

    Article  ADS  Google Scholar 

  13. X. Moya, L. E. Hueso, F. Maccherozzi, A. I. Tovstolytkin, D. I. Podyalovskii, C. Ducati, L. C. Phillips, M. Ghidini, O. Hovorka, A. Berger, M. E. Vickers, E. Defay, S. S. Dhesi, and N. D. Mathur, Nat. Mater. 12, 52 (2013), ar**v: 1209.6516.

    Article  ADS  Google Scholar 

  14. E. Yüzüak, I. Dincer, Y. Elerman, A. Auge, N. Teichert, and A. Hütten, Appl. Phys. Lett. 103, 222403 (2013).

    Article  ADS  Google Scholar 

  15. V. V. Khovaylo, V. V. Rodionova, S. N. Shevyrtalov, and V. Novosad, Phys. Status Solidi (b) 251, 2104 (2014).

    Article  ADS  Google Scholar 

  16. B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. McGuire, D. H. Cobden, W. Yao, D. **ao, P. Jarillo-Herrero, and X. Xu, Nature 546, 270 (2017).

    Article  ADS  Google Scholar 

  17. C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. **a, T. Cao, W. Bao, C. Wang, Y. Wang, Z. Q. Qiu, R. J. Cava, S. G. Louie, J. **a, and X. Zhang, Nature 546, 265 (2017).

    Article  ADS  Google Scholar 

  18. M. Bonilla, S. Kolekar, Y. Ma, H. C. Diaz, V. Kalappattil, R. Das, T. Eggers, H. R. Gutierrez, M. H. Phan, and M. Batzill, Nat. Nanotech. 13, 289 (2018).

    Article  ADS  Google Scholar 

  19. Y. Deng, Y. Yu, Y. Song, J. Zhang, N. Z. Wang, Z. Sun, Y. Yi, Y. Z. Wu, S. Wu, J. Zhu, J. Wang, X. H. Chen, and Y. Zhang, Nature 563, 94 (2018).

    Article  ADS  Google Scholar 

  20. Y. Yin, M. Yi, and W. Guo, ACS Appl. Mater. Interfaces 13, 45907 (2021).

    Article  Google Scholar 

  21. Y. Yin, Q. Gong, M. Yi, and W. Guo, Adv. Funct. Mater. 33, 2214050 (2023).

    Article  Google Scholar 

  22. H. Li, S. Ruan, and Y. Żeng, Adv. Mater. 31, 1900065 (2019).

    Article  Google Scholar 

  23. X. Hou, H. Chen, Z. Zhang, S. Wang, and P. Zhou, Adv. Elec. Mater. 5, 1800944 (2019).

    Article  Google Scholar 

  24. H. Wang, J. Qi, and X. Qian, Appl. Phys. Lett. 117, 083102 (2020).

    Article  ADS  Google Scholar 

  25. M. Xue, W. He, Q. Gong, M. Yi, and W. Guo, Extreme Mech. Lett. 57, 101900 (2022).

    Article  Google Scholar 

  26. Z. Tang, Q. Gong, and M. Yi, Mater. Today Nano 22, 100309 (2023).

    Article  Google Scholar 

  27. T. Li, S. Jiang, N. Sivadas, Z. Wang, Y. Xu, D. Weber, J. E. Goldberger, K. Watanabe, T. Taniguchi, C. J. Fennie, K. Fai Mak, and J. Shan, Nat. Mater. 18, 1303 (2019).

    Article  ADS  Google Scholar 

  28. N. Ubrig, Z. Wang, J. Teyssier, T. Taniguchi, K. Watanabe, E. Giannini, A. F. Morpurgo, and M. Gibertini, 2D Mater. 7, 015007 (2020).

    Article  Google Scholar 

  29. X. Guo, W. **, Z. Ye, G. Ye, H. **e, B. Yang, H. H. Kim, S. Yan, Y. Fu, S. Tian, H. Lei, A. W. Tsen, K. Sun, J. A. Yan, R. He, and L. Zhao, ACS Nano 15, 10444 (2021).

    Article  Google Scholar 

  30. J. Zhang, B. Zhao, T. Zhou, Y. Xue, C. Ma, and Z. Yang, Phys. Rev. B 97, 085401 (2018).

    Article  ADS  Google Scholar 

  31. T. Song, X. Cai, M. W. Y. Tu, X. Zhang, B. Huang, N. P. Wilson, K. L. Seyler, L. Zhu, T. Taniguchi, K. Watanabe, M. A. McGuire, D. H. Cobden, D. **ao, W. Yao, and X. Xu, Science 360, 1214 (2018).

    Article  ADS  Google Scholar 

  32. M. Gibertini, M. Koperski, A. F. Morpurgo, and K. S. Novoselov, Nat. Nanotechnol. 14, 408 (2019).

    Article  ADS  Google Scholar 

  33. H. Li, Y. K. Xu, Z. P. Cheng, B. G. He, and W. B. Zhang, Phys. Chem. Chem. Phys. 22, 9460 (2020).

    Article  Google Scholar 

  34. Q. Gong, M. Yi, and B. X. Xu, Int. J. Smart Nano Mater. 11, 298 (2020).

    Article  ADS  Google Scholar 

  35. Y. Yao, X. Zhan, M. G. Sendeku, P. Yu, F. T. Dajan, C. Zhu, N. Li, J. Wang, F. Wang, Z. Wang, and J. He, Nanotechnology 32, 472001 (2021).

    Article  ADS  Google Scholar 

  36. X. Tan, L. Ding, G. F. Du, and H. H. Fu, Phys. Rev. B 103, 115415 (2021).

    Article  ADS  Google Scholar 

  37. E. K. Petrov, I. V. Silkin, T. V. Menshchikova, and E. V. Chulkov, Jetp. Lett. 109, 121 (2019).

    Article  ADS  Google Scholar 

  38. Y. Gao, H. Li, and W. Zhu, Chin. Phys. B 31, 107304 (2022).

    Article  ADS  Google Scholar 

  39. Y. Zhao, J. Żhang, S. Yuan, and Z. Chen, Adv. Funct. Mater. 29, 1901420 (2019).

    Article  Google Scholar 

  40. S. Chakraborty, and A. Ravikumar, Sci. Rep. 11, 198 (2021).

    Article  Google Scholar 

  41. G. Wang, W. Qin, S. Wang, B. S. Teketel, W. Yu, T. Luo, B. Xu, and B. Lin, ACS Appl. Mater. Interfaces 13, 16694 (2021).

    Article  Google Scholar 

  42. S. Chen, C. Huang, H. Sun, J. Ding, P. Jena, and E. Kan, J. Phys. Chem. C 123, 17987 (2019).

    Article  Google Scholar 

  43. J. K. Hu, J. X. Tan, D. Wu, Z. H. Zhang, and Z. Q. Fan, Appl. Surf. Sci. 560, 149858 (2021).

    Article  Google Scholar 

  44. W. Yu, W. Luo, X. Zhang, Y. Wu, X. Jia, X. Yang, X. Cai, A. Song, Z. Zhang, and W. B. Zhang, J. Alloys Compd. 912, 165093 (2022).

    Article  Google Scholar 

  45. G. Kresse, and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  46. G. Kresse, and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  ADS  Google Scholar 

  47. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  48. J. Neugebauer, and M. Scheffler, Phys. Rev. B 46, 16067 (1992).

    Article  ADS  Google Scholar 

  49. H. J. Monkhorst, and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  MathSciNet  ADS  Google Scholar 

  50. C. A. F. Vaz, J. A. C. Bland, and G. Lauhoff, Rep. Prog. Phys. 71, 056501 (2008).

    Article  ADS  Google Scholar 

  51. B. Skubic, J. Hellsvik, L. Nordström, and O. Eriksson, J. Phys.-Condens. Matter 20, 315203 (2008).

    Article  Google Scholar 

  52. R. F. L. Evans, W. J. Fan, P. Chureemart, T. A. Ostler, M. O. A. Ellis, and R. W. Chantrell, J. Phys.-Condens. Matter 26, 103202 (2014).

    Article  ADS  Google Scholar 

  53. Q. Gong, M. Yi, R. F. L. Evans, B. X. Xu, and O. Gutfleisch, Phys. Rev. B 99, 214409 (2019).

    Article  ADS  Google Scholar 

  54. Q. Gong, M. Yi, and B. X. Xu, Phys. Rev. Mater. 3, 84406 (2019).

    Article  Google Scholar 

  55. V. K. Pecharsky, and K. A. Gschneidner Jr., J. Appl. Phys. 86, 565 (1999).

    Article  ADS  Google Scholar 

  56. K. A. Gschneidner Jr., and V. K. Pecharsky, Annu. Rev. Mater. Sci. 30, 387 (2000).

    Article  ADS  Google Scholar 

  57. Q. Yang, X. Hu, X. Shen, A. V. Krasheninnikov, Z. Chen, and L. Sun, ACS Appl. Mater. Interfaces 13, 21593 (2021).

    Article  Google Scholar 

  58. P. Jiang, L. Li, Z. Liao, Y. X. Zhao, and Z. Zhong, Nano Lett. 18, 3844 (2018).

    Article  ADS  Google Scholar 

  59. F. Zhang, X. Li, Y. Wu, X. Wang, J. Zhao, and W. Gao, Phys. Rev. B 106, L100407 (2022).

    Article  ADS  Google Scholar 

  60. H. Li, W. B. Zhang, and G. Zhou, New J. Phys. 25, 083002 (2023).

    Article  ADS  Google Scholar 

  61. J. Liu, M. Shi, J. Lu, and M. P. Anantram, Phys. Rev. B 97, 054416 (2018).

    Article  ADS  Google Scholar 

  62. C. Xu, J. Feng, H. **ang, and L. Bellaiche, npj Comput. Mater. 4, 57 (2018).

    Article  ADS  Google Scholar 

  63. W. He, Y. Yin, Q. Gong, R. F. L. Evans, O. Gutfleisch, B. Xu, M. Yi, and W. Guo, Small 19, 2300333 (2023).

    Article  Google Scholar 

  64. Y. Liu, and C. Petrovic, Phys. Rev. B 97, 174418 (2018).

    Article  ADS  Google Scholar 

  65. H. B. Tran, H. Momida, Y. Matsushita, K. Shirai, and T. Oguchi, Acta Mater. 231, 117851 (2022).

    Article  Google Scholar 

  66. A. Kartsev, M. Augustin, R. F. L. Evans, K. S. Novoselov, and E. J. G. Santos, npj Comput. Mater. 6, 150 (2020), ar**v: 2006.04891.

    Article  ADS  Google Scholar 

  67. D. A. Wahab, M. Augustin, S. M. Valero, W. Kuang, S. Jenkins, E. Coronado, I. V. Grigorieva, I. J. Vera-Marun, E. Navarro-Moratalla, R. F. L. Evans, K. S. Novoselov, and E. J. G. Santos, Adv. Mater. 33, 2004138 (2021).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qihua Gong or Min Yi.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12272173, 12302134, and 11902150), the Fundamental Research Funds for the Central Universities (Grant No. NS2023054), the National Overseas Youth Talents Program, the Research Fund of State Key Laboratory of Mechanics and Control for Aerospace Structures (Grant Nos. MCMS-I-0419G01, and MCMS-I-0421K01), the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Interdisciplinary Innovation Fund for Doctoral Students of Nan**g University of Aeronautics and Astronautics (Grant No. KXKCXJJ202306). This work was partially supported by the High Performance Computing Platform of Nan**g University of Aeronautics and Astronautics. Simulations were also performed on Hefei advanced computing center.

Supporting Information

The supporting information is available online at http://phys.scichina.com and https://springer.longhoe.net. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, W., Tang, Z., Gong, Q. et al. Theoretical study on magnetocaloric effect and its electric-field regulation in CrI3/metal heterostructure. Sci. China Phys. Mech. Astron. 67, 226811 (2024). https://doi.org/10.1007/s11433-023-2238-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2238-2

Navigation