Log in

Chip-scale spontaneous quasi-phase matched second harmonic generation in a micro-racetrack resonator

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

In this paper, we demonstrate efficient spontaneous quasi-phase matched (SQPM) second harmonic generation (SHG) in a micro-racetrack resonator on X-cut thin film lithium niobate. Our approach does not involve poling, but exploits the anisotropy of the crystals to allow the phase-matching condition to be fulfilled spontaneously as the TE-polarized light circulates in a specifically designed racetrack resonator. In experiment, normalized on-chip conversion efficiencies of 1.01 × 10−4/W and 0.43 × 10−4/W are achieved by 37th-order and 111th-order SQPM, respectively. The configurable SQPM will benefit the application of nonlinear frequency conversion and quantum source generation in chip-scale integrated photonics compatible with standard CMOS fabrication processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, Phys. Rev. A 64, 023802 (2001).

    Article  ADS  Google Scholar 

  2. R. Luo, H. Jiang, S. Rogers, H. Liang, Y. He, and Q. Lin, Opt. Express 25, 24531 (2017).

    Article  ADS  Google Scholar 

  3. Z. Ma, J. Y. Chen, Z. Li, C. Tang, Y. M. Sua, H. Fan, and Y. P. Huang, Phys. Rev. Lett. 125, 263602 (2020).

    Article  ADS  Google Scholar 

  4. L. A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, Phys. Rev. Lett. 57, 2520 (1986).

    Article  ADS  Google Scholar 

  5. X. Guo, C. Zou, C. Schuck, H. Jung, R. Cheng, and H. X. Tang, Light Sci. Appl. 6, e16249 (2017).

    Article  Google Scholar 

  6. P. Kumar, Opt. Lett. 15, 1476 (1990).

    Article  ADS  Google Scholar 

  7. M. G. Raymer, and K. Srinivasan, Phys. Today 65, 32 (2012).

    Article  Google Scholar 

  8. R. W. Boyd, Nonlinear Optics (Academic Press, Singapore, 2020).

    Google Scholar 

  9. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).

    Article  ADS  Google Scholar 

  10. P. A. Franken, and J. F. Ward, Rev. Mod. Phys. 35, 23 (1963).

    Article  ADS  Google Scholar 

  11. S. Zhu, Y. Zhu, and N. Ming, Science 278, 843 (1997).

    Article  ADS  Google Scholar 

  12. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).

    Article  ADS  Google Scholar 

  13. C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chan-drasekhar, P. Winzer, and M. Lončar, Nature 562, 101 (2018).

    Article  ADS  Google Scholar 

  14. M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, Nat. Photon. 13, 359 (2019).

    Article  ADS  Google Scholar 

  15. M. Li, J. Ling, Y. He, U. A. Javid, S. Xue, and Q. Lin, Nat. Commun. 11, 4123 (2020).

    Article  ADS  Google Scholar 

  16. Y. A. Liu, X. S. Yan, J. W. Wu, B. Zhu, Y. P. Chen, and X. F. Chen, Sci. China-Phys. Mech. Astron. 64, 234262 (2021).

    Article  ADS  Google Scholar 

  17. K. J. Vahala, Nature 424, 839 (2003).

    Article  ADS  Google Scholar 

  18. G. Lin, A. Coillet, and Y. K. Chembo, Adv. Opt. Photon. 9, 828 (2017).

    Article  Google Scholar 

  19. I. Breunig, Laser Photonics Rev. 10, 569 (2016).

    Article  ADS  Google Scholar 

  20. Q. Mo, S. Li, Y. Liu, X. Jiang, G. Zhao, Z. **e, X. Lv, and S. Zhu, Chin. Opt. Lett. 14, 091902 (2016).

    Article  ADS  Google Scholar 

  21. H. Wang, Y. K. Lu, L. Wu, D. Y. Oh, B. Shen, S. H. Lee, and K. Vahala, Light Sci. Appl. 9, 205 (2020).

    Article  ADS  Google Scholar 

  22. J. Liu, F. Bo, L. Chang, C. H. Dong, X. Ou, B. Regan, X. Shen, Q. Song, B. Yao, W. Zhang, C. L. Zou, and Y. F. **ao, Sci. China-Phys. Mech. Astron. 65, 104201 (2022).

    Article  ADS  Google Scholar 

  23. J. Chen, X. Shen, S. J. Tang, Q. T. Cao, Q. Gong, and Y. F. **ao, Phys. Rev. Lett. 123, 173902 (2019).

    Article  ADS  Google Scholar 

  24. X. Zhang, Q.-T. Cao, Z. Wang, Y. X. Liu, C. W. Qiu, L. Yang, Q. Gong, and Y.-F. **ao, Nat. Photon. 13, 21 (2018).

    Article  ADS  Google Scholar 

  25. Y. F. **ao, and F. Vollmer, Light Sci. Appl. 10, 141 (2021).

    Article  ADS  Google Scholar 

  26. P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, Nat. Commun. 5, 3109 (2014).

    Article  ADS  Google Scholar 

  27. S. Mariani, A. Andronico, A. Lemaître, I. Favero, S. Ducci, and G. Leo, Opt. Lett. 39, 3062 (2014).

    Article  ADS  Google Scholar 

  28. D. P. Lake, M. Mitchell, H. Jayakumar, L. F. dos Santos, D. Curic, and P. E. Barclay, Appl. Phys. Lett. 108, 031109 (2016).

    Article  ADS  Google Scholar 

  29. J. Lin, N. Yao, Z. Hao, J. Zhang, W. Mao, M. Wang, W. Chu, R. Wu, Z. Fang, L. Qiao, W. Fang, F. Bo, and Y. Cheng, Phys. Rev. Lett. 122, 173903 (2019).

    Article  ADS  Google Scholar 

  30. B. Y. Xu, L. K. Chen, J. T. Lin, L. T. Feng, R. Niu, Z. Y. Zhou, R. H. Gao, C. H. Dong, G. C. Guo, Q. H. Gong, Y. Cheng, Y. F. **ao, and X. F. Ren, Sci. China-Phys. Mech. Aston. 65, 294262 (2022).

    Article  ADS  Google Scholar 

  31. J. Zhu, X. Sun, T. Ding, Y. Tang, S. Liu, Y. Zheng, and X. Chen, J. Opt. Soc. Am. B 40, D44 (2023).

    Article  ADS  Google Scholar 

  32. P. S. Kuo, W. Fang, and G. S. Solomon, Opt. Lett. 34, 3580 (2009).

    Article  ADS  Google Scholar 

  33. A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, Laser Photon. Rev. 12, 1700256 (2018).

    Article  ADS  Google Scholar 

  34. S. Saravi, T. Pertsch, and F. Setzpfandt, Adv. Opt. Mater. 9, 2100789 (2021).

    Article  Google Scholar 

  35. D. Sun, Y. Zhang, D. Wang, W. Song, X. Liu, J. Pang, D. Geng, Y. Sang, and H. Liu, Light Sci. Appl. 9, 197 (2020).

    Article  ADS  Google Scholar 

  36. J. Lin, F. Bo, Y. Cheng, and J. Xu, Photon. Res. 8, 1910 (2020).

    Article  Google Scholar 

  37. J. Y. Chen, Z. H. Ma, Y. M. Sua, Z. Li, C. Tang, and Y. P. Huang, Optica 6, 1244 (2019).

    Article  ADS  Google Scholar 

  38. J. Lu, J. B. Surya, X. Liu, A. W. Bruch, Z. Gong, Y. Xu, and H. X. Tang, Optica 6, 1455 (2019).

    Article  ADS  Google Scholar 

  39. J. Lu, M. Li, C. L. Zou, A. Al Sayem, and H. X. Tang, Optica 7, 1654 (2020).

    Article  ADS  Google Scholar 

  40. Y. Niu, L. Yang, D. Guo, Y. Chen, X. Li, G. Zhao, and X. Hu, Chin. Opt. Lett. 18, 111902 (2020).

    Article  ADS  Google Scholar 

  41. M. Heiblum, and J. Harris, IEEE J. Quantum Electron. 11, 75 (1975).

    Article  ADS  Google Scholar 

  42. E. Shah Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, Opt. Express 18, 2127 (2010).

    Article  ADS  Google Scholar 

  43. R. Luo, Y. He, H. Liang, M. Li, J. Ling, and Q. Lin, Phys. Rev. Appl. 11, 034026 (2019).

    Article  ADS  Google Scholar 

  44. X. Ye, S. Liu, Y. Chen, Y. Zheng, and X. Chen, Opt. Lett. 45, 523 (2020).

    Article  ADS  Google Scholar 

  45. J. Lin, Y. Xu, J. Ni, M. Wang, Z. Fang, L. Qiao, W. Fang, and Y. Cheng, Phys. Rev. Appl. 6, 014002 (2016).

    Article  ADS  Google Scholar 

  46. G. Lin, J. U. Fürst, D. V. Strekalov, and N. Yu, Appl. Phys. Lett. 103, 181107 (2013).

    Article  ADS  Google Scholar 

  47. B. Sturman, and I. Breunig, J. Opt. Soc. Am. B 28, 2465 (2011).

    Article  ADS  Google Scholar 

  48. M. Bahadori, M. Nikdast, Q. Cheng, and K. Bergman, J. Lightwave Technol. 37, 3044 (2019).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu** Chen.

Additional information

This work was supported by the National Key R&D Program of China (Grant No. 2019YFB2203501), National Natural Science Foundation of China (Grant Nos. 12134009, and 91950107), Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX01-ZX06), and Shanghai Jiao Tong University (SJTU) (Grant No. 21X010200828).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, T., Wu, J., Liu, Y. et al. Chip-scale spontaneous quasi-phase matched second harmonic generation in a micro-racetrack resonator. Sci. China Phys. Mech. Astron. 66, 284211 (2023). https://doi.org/10.1007/s11433-023-2145-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2145-6

Navigation