Log in

3D large-scale SPH modeling of vehicle wading with GPU acceleration

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Vehicle wading is a complex fluid-structure interaction (FSI) problem and has attracted great attention recently from the automotive industry, especially for electric vehicles. As a meshless Lagrangian particle method, smoothed particle hydrodynamics (SPH) is one of the most suitable candidates for simulations of vehicle wading due to its inherent advantages in modeling free surface flows, splash, and moving interfaces. Nevertheless, the inevitable neighbor query for the nearest adjacent particles among the support domain leads to considerable computational cost and thus limits its application in 3D large-scale simulations. In this work, a GPU-based SPH method is developed with an adaptive spatial sort technology for simulations of vehicle wading. In addition, a fast, easy-to-implement particle generator is presented for isotropic initialization of the complex vehicle geometry with optimal interpolation properties. A comparative study of vehicle wading on a puddle between the GPU-based SPH with two pieces of commercial software is used to verify the capability of the GPU-based SPH method in terms of convergence analysis, kinematic characteristics, and computing performance. Finally, different conditions of vehicle speeds, water depths, and puddle widths are tested to investigate the vehicle wading numerically. The results demonstrate that the adaptive spatial sort technology can significantly improve the computing performance of the GPU-based SPH method and meanwhile promotes the GPU-based SPH method to be a competitive tool for the study of 3D large-scale FSI problems including vehicle wading. Some helpful findings of the critical vehicle speed, water depth as well as boundary wall effect are also reported in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

References

  1. A. Bystrov, E. Hoare, M. Gashinova, M. Cherniakov, and T. Y. Tran, Sensors 18, 4476 (2018).

    Article  ADS  Google Scholar 

  2. P. Khapane, P. Shankara, and U. Ganeshwade, Auto. Tech. Rev. 4, 62 (2015).

    Article  Google Scholar 

  3. M. Varshney, A. Ballani, S. Pasunurthi, D. Maiti, S. DHAR, and H. Ding, Transient, 3D CFD, Moving Mesh Simulation of Vehicle Water Wading in a Water Tunnel with Inclined Entry-Exit, WCX SAE World Congress Experience, SAE Technical Paper (SAE International, 2022).

  4. X. Zheng, X. Qiao, and F. Kong, in Vehicle Wading Simulation with STRA-CCM+: Proceedings of the FISITA 2012 World Automotive Congress (Springer, Berlin, 2013), pp. 157–165.

    Book  Google Scholar 

  5. P. Khapane, and U. Ganeshwade, Wading Simulation–Challenges and Solutions, SAE 2014 World Congress & Exhibition, SAE Technical Paper (SAE International, 2014).

  6. J. Idoffsson, Wading-Evaluation of SPH-based Simulations Versus Traditional Finite Volume CFD, Dissertation for the Master Degree (Chalmers University of Technology, Goteborg, 2019).

    Google Scholar 

  7. P. Khapane, V. Chavan, and U. Ganeshwade, SAE Int. J. Passeng. Cars-Mech. Syst. 10, 183 (2017).

    Article  Google Scholar 

  8. W. K. Meng, C. H. Yu, J. Li, and R. D. An, Ocean Eng. 256, 111455 (2022).

    Article  Google Scholar 

  9. C. Mulbah, C. Kang, N. Mao, W. Zhang, A. R. Shaikh, and S. Teng, Prog. Nucl. Energy 154, 104478 (2022).

    Article  Google Scholar 

  10. L. Fu, X. Y. Hu, and N. A. Adams, Comput. Phys. Commun. 221, 63 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  11. R. A. Gingold, and J. J. Monaghan, Mon. Not. R. Astron. Soc. 181, 375 (1977).

    Article  ADS  Google Scholar 

  12. L. B. Lucy, Astron. J. 82, 1013 (1977).

    Article  ADS  Google Scholar 

  13. J. J. Monaghan, J. Comput. Phys. 110, 399 (1994).

    Article  ADS  Google Scholar 

  14. A. Khayyer, H. Gotoh, and S. D. Shao, Coast. Eng. 55, 236 (2008).

    Article  Google Scholar 

  15. F. He, H. Zhang, C. Huang, and M. Liu, Coast. Eng. 156, 103617 (2020).

    Article  Google Scholar 

  16. A. Rafiee, F. Pistani, and K. Thiagarajan, Comput. Mech. 47, 65 (2011).

    Article  MathSciNet  Google Scholar 

  17. J. R. Shao, H. Q. Li, G. R. Liu, and M. B. Liu, Comput. Struct. 100–101, 18 (2012).

    Article  Google Scholar 

  18. A. Khayyer, H. Gotoh, and Y. Shimizu, Comput. Fluids 179, 356 (2019).

    Article  MathSciNet  Google Scholar 

  19. P. N. Sun, D. Le Touzé, and A. M. Zhang, Eng. Anal. Bound. Elem. 104, 240 (2019).

    Article  MathSciNet  Google Scholar 

  20. F. He, H. Zhang, C. Huang, and M. Liu, J. Comput. Phys. 453, 110944 (2022).

    Article  Google Scholar 

  21. G. Duan, A. Yamaji, and M. Sakai, Comput. Methods Appl. Mech. Eng. 372, 113425 (2020).

    Article  ADS  Google Scholar 

  22. N. Quartier, A. J. C. Crespo, J. M. Domínguez, V. Stratigaki, and P. Troch, Appl. Ocean Res. 115, 102856 (2021).

    Article  Google Scholar 

  23. P. Sun, A. M. Zhang, S. Marrone, and F. Ming, Appl. Ocean Res. 72, 60 (2018).

    Article  Google Scholar 

  24. Z. F. Meng, F. R. Ming, P. P. Wang, and A. M. Zhang, Adv. Aerodyn. 3, 13 (2021).

    Article  Google Scholar 

  25. H. S. Zhang, Z. L. Zhang, F. He, and M. B. Liu, Eur. J. Mech.-B Fluids 94, 1 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  26. T. Long, Z. Zhang, and M. Liu, Sci. China-Phys. Mech. Astron. 64, 284711 (2021).

    Article  ADS  Google Scholar 

  27. Z. L. Zhang, C. Shu, M. S. U. Khalid, Y. Y. Liu, Z. Y. Yuan, Q. H. Jiang, and W. Liu, J. Manuf. Process. 84, 565 (2022).

    Article  Google Scholar 

  28. M. Soleimani, and C. Weißenfels, Comput. Geotech. 133, 104006 (2021).

    Article  Google Scholar 

  29. M. B. Liu, W. P. **e, and G. R. Liu, Appl. Math. Model. 29, 1252 (2005).

    Article  Google Scholar 

  30. Z. L. Zhang, and M. B. Liu, Appl. Math. Model. 60, 606 (2018).

    Article  MathSciNet  Google Scholar 

  31. M. Antuono, A. Colagrossi, S. Marrone, and D. Molteni, Comput. Phys. Commun. 181, 532 (2010).

    Article  ADS  Google Scholar 

  32. D. D. Meringolo, S. Marrone, A. Colagrossi, and Y. Liu, Comput. Fluids 179, 334 (2019).

    Article  MathSciNet  Google Scholar 

  33. C. Huang, D. H. Zhang, Y. X. Shi, Y. L. Si, and B. Huang, Int. J. Numer. Methods Eng. 113, 179 (2018).

    Article  Google Scholar 

  34. P. N. Sun, A. Colagrossi, S. Marrone, M. Antuono, and A. M. Zhang, Comput. Methods Appl. Mech. Eng. 348, 912 (2019).

    Article  ADS  Google Scholar 

  35. Z. L. Zhang, K. Walayat, C. Huang, J. Z. Chang, and M. B. Liu, Int. J. Heat Mass Transf. 128, 1245 (2019).

    Article  Google Scholar 

  36. W. Zhang, P. Jiao, and Q. Hou, J. Phys.-Conf. Ser. 2083, 042091 (2021).

    Article  Google Scholar 

  37. X. F. Yang, S. C. Kong, M. B. Liu, and Q. Q. Liu, J. Comput. Phys. 443, 110539 (2021).

    Article  Google Scholar 

  38. S. Long, X. Fan, C. Li, Y. Liu, S. Fan, X. W. Guo, and C. Yang, J. Comput. Phys. 463, 111234 (2022).

    Article  Google Scholar 

  39. G. Oger, D. Le Touzé, D. Guibert, M. de Leffe, J. Biddiscombe, J. Soumagne, and J. G. Piccinali, Comput. Phys. Commun. 200, 1 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  40. J. M. Domínguez, A. J. C. Crespo, D. Valdez-Balderas, B. D. Rogers, and M. Gómez-Gesteira, Comput. Phys. Commun. 184, 1848 (2013).

    Article  ADS  Google Scholar 

  41. L. Antonelli, E. Francomano, and F. Gregoretti, Appl. Math. Comput. 409, 125482 (2021).

    Google Scholar 

  42. G. R. Liu, and M. B. Liu, Smoothed Particle Hydrodynamics: A Meshfree Particle Method (World Scientific, Singapore, 2003).

    Book  MATH  Google Scholar 

  43. J. P. Morris, P. J. Fox, and Y. Zhu, J. Comput. Phys. 136, 214 (1997).

    Article  ADS  Google Scholar 

  44. J. J. Monaghan, J. Comput. Phys. 159, 290 (2000).

    Article  ADS  Google Scholar 

  45. S. Marrone, M. Antuono, A. Colagrossi, G. Colicchio, D. Le Touzé, and G. Graziani, Comput. Methods Appl. Mech. Eng. 200, 1526 (2011).

    Article  ADS  Google Scholar 

  46. M. Antuono, A. Colagrossi, S. Marrone, and C. Lugni, Comput. Phys. Commun. 182, 866 (2011).

    Article  ADS  Google Scholar 

  47. C. Huang, J. M. Lei, M. B. Liu, and X. Y. Peng, Int. J. Numer. Meth. Fluids 78, 691 (2015).

    Article  Google Scholar 

  48. D. H. Zhang, Y. X. Shi, C. Huang, Y. L. Si, B. Huang, and W. Li, Ocean Eng. 152, 273 (2018).

    Article  Google Scholar 

  49. A. Colagrossi, E. Rossi, S. Marrone, and D. L. Touzé, Commun. Comput. Phys. 20, 660 (2016).

    Article  MathSciNet  Google Scholar 

  50. J. Domínguez, A. Crespo, A. Barreiro, M. Gómez-Gesteira, and A. Mayrhofer, in Development of a New Pre-processing Tool for SPH Models with Complex Geometries: Proceedings of the 6th International SPHERIC Workshop, Hamburg, 2011. pp. 117–124.

  51. D. Dunbar, and G. Humphreys, ACM Trans. Graph. 25, 503 (2006).

    Article  Google Scholar 

  52. S. Diehl, G. Rockefeller, C. L. Fryer, D. Riethmiller, and T. S. Statler, Publ. Astron. Soc. Aust. 32, E048 (2015).

    Article  ADS  Google Scholar 

  53. L. Fu, and Z. Ji, Comput. Phys. Commun. 234, 72 (2019).

    Article  ADS  Google Scholar 

  54. Y. Zhu, C. Zhang, Y. Yu, and X. Hu, J. Hydrodyn. 33, 195 (2021).

    Article  ADS  Google Scholar 

  55. J. Liu, Y. Q. Chen, J. M. Maisog, and G. Luta, Comput.-Aided Des. 42, 1143 (2010).

    Article  Google Scholar 

  56. M. Ihmsen, J. Cornelis, B. Solenthaler, C. Horvath, and M. Teschner, IEEE Trans. Visual. Comput. Graph. 20, 426 (2014).

    Article  Google Scholar 

  57. S. J. Cummins, and M. Rudman, J. Comput. Phys. 152, 584 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  58. S. Shao, and E. Y. M. Lo, Adv. Water Resour. 26, 787 (2003).

    Article  ADS  Google Scholar 

  59. R. Xu, P. Stansby, and D. Laurence, J. Comput. Phys. 228, 6703 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  60. W. P. Jones, and B. Launder, Int. J. Heat Mass Transf. 5, 301 (1973).

    Google Scholar 

  61. B. E. Launder, and B. I. Sharma, Lett. Heat Mass Transf. 1, 131 (1974).

    Article  ADS  Google Scholar 

  62. S. Marrone, A. Colagrossi, D. Le Touzé, and G. Graziani, J. Comput. Phys. 229, 3652 (2010).

    Article  ADS  Google Scholar 

  63. G. Duan, T. Matsunaga, S. Koshizuka, A. Yamaguchi, and M. Sakai, Comput. Methods Appl. Mech. Eng. 388, 114219 (2022).

    Article  ADS  Google Scholar 

  64. G. Duan, and M. Sakai, Comput. Methods Appl. Mech. Eng. 389, 114338 (2022).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moubin Liu.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

This work was supported by the Laoshan Laboratory (Grant No. LSKJ202202000), National Natural Science Foundation of China (Grant Nos. 12032002, and U22A20256), and Natural Science Foundation of Bei**g (Grant No. L212023).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Li, X., Feng, K. et al. 3D large-scale SPH modeling of vehicle wading with GPU acceleration. Sci. China Phys. Mech. Astron. 66, 104711 (2023). https://doi.org/10.1007/s11433-023-2137-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2137-5

Navigation