Log in

Diffusion effect on the decay of time-resolved photoluminescence under low illumination in lead halide perovskites

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Time-resolved photoluminescence (TRPL) has been extensively used to measure the carrier lifetime in lead halide perovskites. The TRPL curves of perovskite materials are usually fitted with a multi-exponential function, instead of a single exponential one. This was considered to be a result of the surface and the bulk recombination or the additional radiative recombination caused by the high excited carrier density. Here, a new model considering the diffusion and the trap-assisted recombination of carriers is proposed to explain the TRPL curves. The expressions of the TRPL curves and the transient absorption (TA) dynamic curves are theoretically derived, demonstrating that the TRPL curve is an infinite exponential series, regardless of the presence of surface recombination or not. Our newly developed highly sensitive nanosecond TA and TRPL were employed to measure the carrier dynamics of the same sample under low illumination in the linear response region of TA, thereby experimentally verifying our model. These results suggest that the decay of the TRPL is not only a consequence of the carrier recombination but also the carrier diffusion. TRPL cannot provide a direct measurement of the carrier lifetime, whereas TA spectroscopy can. Furthermore, the surface and the bulk recombination can be resolved and the average diffusion coefficient \((\overline D)\) can also be correctly obtained by combining TRPL and TA measurements. We also propose an approximate method for calculating the carrier lifetime and diffusion coefficient of high-quality perovskite films. Our model provides not only a new interpretation of the dynamics of the PL decay but also a deep insight into the carrier dynamics in the nanosecond time scale under working condition of perovskites solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Chen, X. Dai, S. Xu, H. Jiao, L. Zhao, and J. Huang, Science 373, 902 (2021).

    Article  ADS  Google Scholar 

  2. J. Hou, P. Chen, A. Shukla, A. Krajnc, T. Wang, X. Li, R. Doasa, L. H. G. Tizei, B. Chan, D. N. Johnstone, R. Lin, T. U. Schülli, I. Martens, D. Appadoo, M. S. Ari, Z. Wang, T. Wei, S. C. Lo, M. Lu, S. Li, E. B. Namdas, G. Mali, A. K. Cheetham, S. M. Collins, V. Chen, L. Wang, and T. D. Bennett, Science 374, 621 (2021).

    Article  ADS  Google Scholar 

  3. D. Ma, K. Lin, Y. Dong, H. Choubisa, A. H. Proppe, D. Wu, Y. K. Wang, B. Chen, P. Li, J. Z. Fan, F. Yuan, A. Johnston, Y. Liu, Y. Kang, Z. H. Lu, Z. Wei, and E. H. Sargent, Nature 599, 594 (2021).

    Article  ADS  Google Scholar 

  4. H. Min, D. Y. Lee, J. Kim, G. Kim, K. S. Lee, J. Kim, M. J. Paik, Y. K. Kim, K. S. Kim, M. G. Kim, T. J. Shin, and S. II Seok, Nature 598, 444 (2021).

    Article  ADS  Google Scholar 

  5. S. Peng, J. Ma, P. Li, S. Zang, Y. Zhang, and Y. Song, Adv. Funct. Mater. 32, 2205289 (2022).

    Article  Google Scholar 

  6. W. Zhao, J. Xu, K. He, Y. Cai, Y. Han, S. Yang, S. Zhan, D. Wang, Z. Liu, and S. Liu, Nano-Micro Lett. 13, 169 (2021).

    Article  ADS  Google Scholar 

  7. M. Li, J. Zhou, L. Tan, H. Li, Y. Liu, C. Jiang, Y. Ye, L. Ding, W. Tress, and C. Yi, Innovation 3, 100310 (2022).

    Google Scholar 

  8. Z. Yang, W. Zhang, S. Wu, H. Zhu, Z. Liu, Z. Liu, Z. Jiang, R. Chen, J. Zhou, Q. Lu, Z. **ao, L. Shi, H. Chen, L. K. Ono, S. Zhang, Y. Zhang, Y. Qi, L. Han, and W. Chen, Sci. Adv. 7, eabg3749 (2021).

    Article  ADS  Google Scholar 

  9. C. Qiu, L. Wagner, J. Liu, W. Zhang, J. Du, Q. Wang, Y. Hu, and H. Han, EcoMat 5, e12268 (2023).

    Article  Google Scholar 

  10. M. B. Johnston, and L. M. Herz, Acc. Chem. Res. 49, 146 (2016).

    Article  Google Scholar 

  11. Y. Yang, M. Yang, Z. Li, R. Crisp, K. Zhu, and M. C. Beard, J. Phys. Chem. Lett. 6, 4688 (2015).

    Article  Google Scholar 

  12. J. S. Manser, and P. V. Kamat, Nat. Photon. 8, 737 (2014).

    Article  ADS  Google Scholar 

  13. Y. Yang, D. P. Ostrowski, R. M. France, K. Zhu, J. van de Lagemaat, J. M. Luther, and M. C. Beard, Nat. Photon. 10, 53 (2015).

    Article  ADS  Google Scholar 

  14. A. A. B. Baloch, F. H. Alharbi, G. Grancini, M. I. Hossain, M. K. Nazeeruddin, and N. Tabet, J. Phys. Chem. C 122, 26805 (2018).

    Article  Google Scholar 

  15. D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, and O. M. Bakr, Z Science 347, 519 (2015).

    Article  ADS  Google Scholar 

  16. Q. Han, S. H. Bae, P. Sun, Y. T. Hsieh, Y. M. Yang, Y. S. Rim, H. Zhao, Q. Chen, W. Shi, G. Li, and Y. Yang, Adv. Mater. 28, 2253 (2016).

    Article  Google Scholar 

  17. B. Wenger, P. K. Nayak, X. Wen, S. V. Kesava, N. K. Noel, and H. J. Snaith, Nat. Commun. 8, 590 (2017).

    Article  ADS  Google Scholar 

  18. A. A. Zhumekenov, M. I. Saidaminov, M. A. Haque, E. Alarousu, S. P. Sarmah, B. Murali, I. Dursun, X. H. Miao, A. L. Abdelhady, T. Wu, O. F. Mohammed, and O. M. Bakr, ACS Energy Lett. 1, 32 (2016).

    Article  Google Scholar 

  19. Y. X. Weng, K. C. Chan, B. C. Tzeng, and C. M. Che, J. Chem. Phys. 109, 5948 (1998).

    Article  ADS  Google Scholar 

  20. H. Li, G. Hu, B. H. Li, W. Zeng, J. Zhang, X. Wang, C. Zhou, Z. Ren, and X. Yang, Rev. Sci. Instrum. 92, 053002 (2021).

    Article  ADS  Google Scholar 

  21. G. **ng, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, Science 342, 344 (2013).

    Article  ADS  Google Scholar 

  22. M. Grundmann, The Physics of Semiconductors: An Introduction Including Nanophysics and Applications (3rd ed.) (Springer, New York, 2016).

    Book  Google Scholar 

  23. J. Leng, J. Liu, J. Zhang, and S. **, J. Phys. Chem. Lett. 7, 5056 (2016).

    Article  Google Scholar 

  24. B. H. Li, H. Li, H. Di, Z. Xuan, W. Zeng, J. C. Wang, D. B. Cheng, C. Zhou, X. Wang, Y. Zhao, J. Zhang, Z. Ren, and X. Yang, JACS Au 3, 441 (2023).

    Article  Google Scholar 

  25. A. Ren, H. Lai, X. Hao, Z. Tang, H. Xu, B. M. F. Yu Jeco, K. Watanabe, L. Wu, J. Zhang, M. Sugiyama, J. Wu, and D. Zhao, Joule 4, 1263 (2020).

    Article  Google Scholar 

  26. Y. Zhao, F. Ma, Z. Qu, S. Yu, T. Shen, H. X. Deng, X. Chu, X. Peng, Y. Yuan, X. Zhang, and J. You, Science 377, 531 (2022).

    Article  ADS  Google Scholar 

  27. S. Gharibzadeh, P. Fassl, I. M. Hossain, P. Rohrbeck, M. Frericks, M. Schmidt, T. Duong, M. R. Khan, T. Abzieher, B. A. Nejand, F. Schackmar, O. Almora, T. Feeney, R. Singh, D. Fuchs, U. Lemmer, J. P. Hofmann, S. A. L. Weber, and U. W. Paetzold, Energy Environ. Sci. 14, 5875 (2021).

    Article  Google Scholar 

  28. Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin, and J. You, Nat. Photon. 13, 460 (2019).

    Article  ADS  Google Scholar 

  29. H. Y. Fan, Phys. Rev. 92, 1424 (1953).

    Article  ADS  Google Scholar 

  30. M. Rudan, Physics of Semiconductor Devices (Springer, New York, 2015).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yiying Zhao or Bohan Li.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 11888101), National Key Research and Development Program of China (Grant No. 2022YFA1403901), Sichuan Science and Technology Program (Grant Nos. 2021JDTD0021, and 2022ZYD0015), and Innovation Funds from China Academy of Engineering Physics (Grant No. CX20210037).

Supporting Information

The supporting information is available online at http://phys.scichina.com and https://springer.longhoe.net. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Di, H., Wang, X. et al. Diffusion effect on the decay of time-resolved photoluminescence under low illumination in lead halide perovskites. Sci. China Phys. Mech. Astron. 66, 287311 (2023). https://doi.org/10.1007/s11433-023-2108-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2108-1

Navigation