Log in

Large magnetic entropy change in weberite-type oxides Gd3MO7 (M = Nb, Sb, and Ta)

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

In the present work, the structure, magnetic properties, and cryogenic magnetocaloric effect of weberite-type oxides Gd3MO7 (M = Nb, Sb, and Ta) are reported through powder X-ray diffraction, bulk susceptibility, and heat capacity measurements, as well as scaling law analysis and a mean-field approach. A remarkably large isothermal magnetic entropy change of 354.0 mJ K−1 cm−3 is observed for Gd3SbO7 under an external field of 9 T at 2.0 K. The relative cooling power is estimated to be 618.9 J kg−1 (4.8 J cm−3) for an applied field of 8.9 T, with the largest adiabatic temperature change being 22.4 K at 6.3 K. The magnetocaloric performance of these oxides is quite impressive when compared with the benchmark magnetic refrigerant, gadolinium gallium garnet (Gd3Ga5O12, GGG). Therefore, Gd3MO7 (M = Nb, Sb, and Ta) are promising alternatives for cryogenic cooling techniques, especially for the magnetic liquefaction of helium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Balli, S. Jandl, P. Fournier, and A. Kedous-Lebouc, Appl. Phys. Rev. 4, 021305 (2017).

    Article  ADS  Google Scholar 

  2. J. Lyubina, J. Phys. D-Appl. Phys. 50, 053002 (2017).

    Article  ADS  Google Scholar 

  3. N. A. de Oliveira, and P. J. von Ranke, Phys. Rep. 489, 89 (2010).

    Article  ADS  Google Scholar 

  4. V. Franco, J. S. Blázquez, J. J. Ipus, J. Y. Law, L. M. Moreno-Ramírez, and A. Conde, Prog. Mater. Sci. 93, 112 (2018)

    Article  Google Scholar 

  5. H. F. Kirby, D. D. Belyea, J. T. Willman, and C. W. Miller, J. Vacuum Sci. Tech. A-Vacuum Surfs Films 31, 031506 (2013).

    Article  ADS  Google Scholar 

  6. J. A. Barclay, and W. A. Steyert, Cryogenics 22, 73 (1982)

    Article  ADS  Google Scholar 

  7. P. Mukherjee, A. C. Sackville Hamilton, H. F. J. Glass, and S. E. Dutton, J. Phys.-Condens. Matter 29, 405808 (2017), ar**v: 1707.06730.

    Article  Google Scholar 

  8. A. Kitanovski, J. Tušek, U. Tomc, U. Plaznik, M. Ožbolt, and A. Poredoš, in Magnetocaloric Energy Conversion From Theory to Applications, edited by A. Kitanovski, J. Tušek, U. Tomc, U. Plaznik, M. Ožbolt, and A. Poredoš (Springer, Heidelberg, 2015), pp. 1–21.

  9. Z. Yang, J. Y. Ge, S. Ruan, H. Cui, and Y. J. Zeng, J. Mater. Chem. C 9, 6754 (2021).

    Article  Google Scholar 

  10. L. S. Chen, J. Z. Zhang, L. Wen, P. Yu, and L. **a, Sci. China-Phys. Mech. Astron. 61, 056121 (2018)

    Article  ADS  Google Scholar 

  11. F. X. Liu, H. Zhang, H. Zhou, D. Y. Cong, R. J. Huang, L. C. Wang, and Y. Long, Sci. China-Phys. Mech. Astron. 63, 277511 (2020)

    Article  ADS  Google Scholar 

  12. Z. Ma, X. Dong, Z. Zhang, and L. Li, J. Mater. Sci. Tech. 92, 138 (2021)

    Article  Google Scholar 

  13. Y. Zhang, J. Zhu, S. Li, J. Wang, and Z. Ren, J. Mater. Sci. Tech. 102, 66 (2022)

    Article  Google Scholar 

  14. H. **ang, Y. **ng, F. Dai, H. Wang, L. Su, L. Miao, G. Zhang, Y. Wang, X. Qi, L. Yao, H. Wang, B. Zhao, J. Li, and Y. Zhou, J. Adv. Ceram. 10, 385 (2021).

    Article  Google Scholar 

  15. E. Palacios, M. Evangelisti, R. Sáez-Puche, A. J. Dos Santos-García, F. Fernández-Martínez, C. Cascales, M. Castro, R. Burriel, O. Fabelo, and J. A. Rodríguez-Velamazán, Phys. Rev. B 97, 214401 (2018)

    Article  ADS  Google Scholar 

  16. E. Palacios, J. A. Rodríguez-Velamazán, M. Evangelisti, G. J. McIntyre, G. Lorusso, D. Visser, L. J. de Jongh, and L. A. Boatner, Phys. Rev. B 90, 214423 (2014).

    Article  ADS  Google Scholar 

  17. Z. Yang, H. Zhang, M. Bai, W. Li, S. Huang, S. Ruan, and Y. J. Zeng, J. Mater. Chem. C 8, 11866 (2020).

    Article  Google Scholar 

  18. J. M. D. Coey, in Magnetism and Magnetic Materials, edited by J. M. D. Coey (Cambridge University Press, Cambridge, 2001), pp. 97–127.

  19. N. K. C. Muniraju, R. Baral, Y. Tian, R. Li, N. Poudel, K. Gofryk, N. Barišić, B. Kiefer, J. H. Ross Jr., and H. S. Nair, Inorg. Chem. 59, 15144 (2020).

    Article  Google Scholar 

  20. A. C. S. Hamilton, G. I. Lampronti, S. E. Rowley, and S. E. Dutton, J. Phys.-Condens. Matter 26, 116001 (2014).

    Article  Google Scholar 

  21. Y. Hinatsu, and Y. Doi, J. Solid State Chem. 198, 176 (2013)

    Article  ADS  Google Scholar 

  22. Y. Hinatsu, Y. Doi, and M. Wakeshima, J. Solid State Chem. 262, 224 (2018)

    Article  ADS  Google Scholar 

  23. M. Inabayashi, Y. Doi, M. Wakeshima, and Y. Hinatsu, J. Solid State Chem. 250, 100 (2017)

    Article  ADS  Google Scholar 

  24. M. Inabayashi, Y. Doi, M. Wakeshima, and Y. Hinatsu, J. Ceram. Soc. Jpn. 126, 920 (2018).

    Article  Google Scholar 

  25. Y. Hinatsu, H. Ebisawa, and Y. Doi, J. Solid State Chem. 182, 1694 (2009).

    Article  ADS  Google Scholar 

  26. M. Wakeshima, H. Nishimine, and Y. Hinatsu, J. Phys.-Condens. Matter 16, 4103 (2004).

    Article  ADS  Google Scholar 

  27. M. Wakeshima, and Y. Hinatsu, J. Solid State Chem. 183, 2681 (2010).

    Article  ADS  Google Scholar 

  28. H. M. Rietveld, J. Appl. Crystlogr. 2, 65 (1969).

    Article  Google Scholar 

  29. R. D. Shannon, and C. T. Prewitt, Acta Crystallogr. B Struct. Crystallogr. Cryst. Chem. 26, 1046 (1970).

    Article  Google Scholar 

  30. Z. Yang, H. Zhang, J. Xu, R. Ma, T. Sasaki, Y. J. Zeng, S. Ruan, and Y. Hou, Natl. Sci. Rev. 7, 841 (2020).

    Article  Google Scholar 

  31. P. Mukherjee, and S. E. Dutton, Adv. Funct. Mater. 27, 1701950 (2017).

    Article  Google Scholar 

  32. T. Fennell, S. T. Bramwell, and M. A. Green, Can. J. Phys. 79, 1415 (2001).

    Article  ADS  Google Scholar 

  33. O. A. Petrenko, M. R. Lees, G. Balakrishnan, V. N. Glazkov, and S. S. Sosin, Phys. Rev. B 85, 180412 (2012), ar**v: 1203.6326.

    Article  ADS  Google Scholar 

  34. S. Bustingorry, F. Pomiro, G. Aurelio, and J. Curiale, Phys. Rev. B 93, 224429 (2016)

    Article  ADS  Google Scholar 

  35. B. K. Banerjee, Phys. Lett. 12, 16 (1964).

    Article  ADS  Google Scholar 

  36. A. Zeleňáková, P. Hrubovčák, O. Kapusta, V. Zeleňák, and V. Franco, Appl. Phys. Lett. 109, 122412 (2016).

    Article  ADS  Google Scholar 

  37. S. Mahana, U. Manju, and D. Topwal, J. Phys. D-Appl. Phys. 50, 035002 (2016)

    Article  ADS  Google Scholar 

  38. P. Xu, Z. Ma, P. Wang, H. Wang, and L. Li, Mater. Today Phys. 20, 100470 (2021)

    Article  Google Scholar 

  39. B. Wu, Y. Zhang, D. Guo, J. Wang, and Z. Ren, Ceram. Int. 47, 6290 (2021)

    Article  Google Scholar 

  40. L. Li, P. Xu, S. Ye, Y. Li, G. Liu, D. Huo, and M. Yan, Acta Mater. 194, 354 (2020).

    Article  ADS  Google Scholar 

  41. S. Mahana, U. Manju, and D. Topwal, J. Phys. D-Appl. Phys. 51, 305002 (2018).

    Article  Google Scholar 

  42. R. Sibille, T. Mazet, B. Malaman, and M. François, Chem. Eur. J. 18, 12970 (2012).

    Article  Google Scholar 

  43. S. Biswas, A. Adhikary, S. Goswami, and S. Konar, Dalton Trans. 42, 13331 (2013).

    Article  Google Scholar 

  44. P. Schouwink, E. Didelot, Y. S. Lee, T. Mazet, and R. Černý, J. Alloys Compd. 664, 378 (2016).

    Article  Google Scholar 

  45. A. Midya, N. Khan, D. Bhoi, and P. Mandal, Appl. Phys. Lett. 101, 132415 (2012), ar**v: 1209.2513.

    Article  ADS  Google Scholar 

  46. Y. Tang, W. Guo, S. Zhang, M. Yang, H. **ang, and Z. He, Dalton Trans. 44, 17026 (2015).

    Article  Google Scholar 

  47. M. **a, S. Shen, J. Lu, Y. Sun, and R. Li, Chem. Eur. J. 24, 3147 (2018).

    Article  Google Scholar 

  48. Y. Han, S. D. Han, J. Pan, Y. J. Ma, and G. M. Wang, Mater. Chem. Front. 2, 2327 (2018).

    Article  Google Scholar 

  49. J. K. Murthy, K. D. Chandrasekhar, S. Mahana, D. Topwal, and A. Venimadhav, J. Phys. D-Appl. Phys. 48, 355001 (2015), ar**v: 1508.00087.

    Article  ADS  Google Scholar 

  50. G. Lorusso, J. W. Sharples, E. Palacios, O. Roubeau, E. K. Brechin, R. Sessoli, A. Rossin, F. Tuna, E. J. L. McInnes, D. Collison, and M. Evangelisti, Adv. Mater. 25, 4653 (2013).

    Article  Google Scholar 

  51. S. D. Han, X. H. Miao, S. J. Liu, and X. H. Bu, Inorg. Chem. Front. 1, 549 (2014).

    Article  Google Scholar 

  52. V. Franco, and A. Conde, Int. J. Refrigerat. 33, 465 (2010)

    Article  Google Scholar 

  53. V. Franco, A. Conde, V. Provenzano, and R. D. Shull, J. Magn. Magn. Mater. 322, 218 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongzhi Cui, Youwen Long or Yu-Jia Zeng.

Additional information

This work was supported by the Science, Technology and Innovation Commission of Shenzhen Municipality (Grant Nos. JCYJ20190808152217447, JCYJ20180305125212075, JCYJ20180507182246321, and JCYJ20210324095611032), the National Natural Science Foundation of China (Grant Nos. 51925804, 11904236, 11934017, and 11921004), the Bei**g Natural Science Foundation (Grant No. Z200007), the National Key R&D Program of China (Grant Nos. 2018YFE0103200, and 2018YFA0305700), and the Chinese Academy of Sciences (Grant No. XDB33000000). Hui Li is also thankful for the support from the Young Innovative Talents Project for Regular Universities in Guangdong Province (Grant No. 2018KQNCX396).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Qin, S., Ye, X. et al. Large magnetic entropy change in weberite-type oxides Gd3MO7 (M = Nb, Sb, and Ta). Sci. China Phys. Mech. Astron. 65, 247011 (2022). https://doi.org/10.1007/s11433-021-1834-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1834-4

Navigation