Log in

Magnetism variation of the compressed antiferromagnetic topological insulator EuSn2As2

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We report a comprehensive high-pressure study, up to 21.1 GPa, on the antiferromagnetic topological insulator EuSn2As2 achieved through synchrotron X-ray diffraction, Raman scattering, electrical resistance, magnetic resistance, and Hall transport measurements in combination with first-principles calculations. The Néel temperatures determined from resistance are increased from (24±1) to (77±8) K under pressure, which is a result of enhanced magnetic exchange couplings between Eu2+ ions yielded by our first-principles calculations. The negative magnetoresistance of EuSn2As2 persists to higher temperatures accordingly. However, the enhancement of the observed Néel temperatures deviates from the calculations above 10.0 GPa. In addition, the magnitude of the magnetoresistance, Hall coefficients, and charge carrier densities show abrupt changes between 6.9 and 10.0 GPa. The abrupt changes likely originate from a pressure-induced valence change of Eu ions from a divalent state to a divalent and trivalent mixed state or are related to the structural transition revealed by Raman scattering measurements. Our results provide insight into magnetism variation in EuSn2As2 and similar antiferromagnetic topological insulators under pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. M. Otrokov, I. P. Rusinov, M. Blanco-Rey, M. Hoffmann, A. Y. Vyazovskaya, S. V. Eremeev, A. Ernst, P. M. Echenique, A. Arnau, and E. V. Chulkov, Phys. Rev. Lett. 122, 107202 (2019), ar**v: 1810.05289.

    Article  ADS  Google Scholar 

  2. Y. Gong, J. Guo, J. Li, K. Zhu, M. Liao, X. Liu, Q. Zhang, L. Gu, L. Tang, and X. Feng, Chin. Phys. Lett. 36, 076801 (2019).

    Article  ADS  Google Scholar 

  3. Q. Liu, C. X. Liu, C. Xu, X. L. Qi, and S. C. Zhang, Phys. Rev. Lett. 102, 156603 (2009), ar**v: 0808.2224.

    Article  ADS  Google Scholar 

  4. J. Li, Y. Li, S. Du, Z. Wang, B. L. Gu, S. C. Zhang, K. He, W. Duan, and Y. Xu, Sci. Adv. 5, eaaw5685 (2019).

    Article  ADS  Google Scholar 

  5. J. Wu, F. Liu, M. Sasase, K. Ienaga, Y. Obata, R. Yukawa, K. Horiba, H. Kumigashira, S. Okuma, T. Inoshita, and H. Hosono, Sci. Adv. 5, eaax9989 (2019), ar**v: 1905.02385.

    Article  ADS  Google Scholar 

  6. Y. Tokura, K. Yasuda, and A. Tsukazaki, Nat. Rev. Phys. 1, 126 (2019).

    Article  Google Scholar 

  7. L. Šmejkal, Y. Mokrousov, B. Yan, and A. H. MacDonald, Nat. Phys. 14, 242 (2018).

    Article  Google Scholar 

  8. M. Mogi, M. Kawamura, R. Yoshimi, A. Tsukazaki, Y. Kozuka, N. Shirakawa, K. S. Takahashi, M. Kawasaki, and Y. Tokura, Nat. Mater. 16, 516 (2017).

    Article  ADS  Google Scholar 

  9. Q. L. He, X. Kou, A. J. Grutter, G. Yin, L. Pan, X. Che, Y. Liu, T. Nie, B. Zhang, S. M. Disseler, B. J. Kirby, I. I. Ratcliff William, Q. Shao, K. Murata, X. Zhu, G. Yu, Y. Fan, M. Montazeri, X. Han, J. A. Borchers, and K. L. Wang, Nat. Mater. 16, 94 (2017), ar**v: 1605.04854.

    Article  ADS  Google Scholar 

  10. C. Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L. L. Wang, Z. Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z. Fang, S. C. Zhang, K. He, Y. Wang, L. Lu, X. C. Ma, and Q. K. Xue, Science 340, 167 (2013), ar**v: 1605.08829.

    Article  ADS  Google Scholar 

  11. M. Q. Arguilla, N. D. Cultrara, Z. J. Baum, S. Jiang, R. D. Ross, and J. E. Goldberger, Inorg. Chem. Front. 4, 378 (2017).

    Article  Google Scholar 

  12. H. C. Chen, Z. F. Lou, Y. X. Zhou, Q. Chen, B. J. Xu, S. J. Chen, J. H. Du, J. H. Yang, H. D. Wang, and M. H. Fang, Chin. Phys. Lett. 37, 047201 (2020).

    Article  ADS  Google Scholar 

  13. F. H. Yu, H. M. Mu, W. Z. Zhuo, Z. Y. Wang, Z. F. Wang, J. J. Ying, and X. H. Chen, Phys. Rev. B 102, 180404 (2020).

    Article  ADS  Google Scholar 

  14. H. Li, S. Y. Gao, S. F. Duan, Y. F. Xu, K. J. Zhu, S. J. Tian, J. C. Gao, W. H. Fan, Z. C. Rao, J. R. Huang, J. J. Li, D. Y. Yan, Z. T. Liu, W. L. Liu, Y. B. Huang, Y. L. Li, Y. Liu, G. B. Zhang, P. Zhang, T. Kondo, S. Shin, H. C. Lei, Y. G. Shi, W. T. Zhang, H. M. Weng, T. Qian, and H. Ding, Phys. Rev. X 9, 041039 (2019), ar**v: 1907.06491.

    Google Scholar 

  15. K. Y. Chen, B. S. Wang, J. Q. Yan, D. S. Parker, J. S. Zhou, Y. Uwatoko, and J. G. Cheng, Phys. Rev. Mater. 3, 094201 (2019), ar**v: 1907.01760.

    Article  Google Scholar 

  16. M. Debessai, T. Matsuoka, J. J. Hamlin, J. S. Schilling, and K. Shimizu, Phys. Rev. Lett. 102, 197002 (2009).

    Article  ADS  Google Scholar 

  17. K. Matsubayashi, K. Munakata, M. Isobe, N. Katayama, K. Ohgushi, Y. Ueda, N. Kawamura, M. Mizumaki, N. Ishimatsu, M. Hedo, I. Umehara, and Y. Uwatoko, Phys. Rev. B 84, 024502 (2011), ar**v: 1007.2889.

    Article  ADS  Google Scholar 

  18. A. Mitsuda, S. Hamano, N. Araoka, H. Yayama, and H. Wada, J. Phys. Soc. Jpn. 81, 023709 (2012).

    Article  ADS  Google Scholar 

  19. H. J. Hesse, and G. Wortmann, Hyperfine Interact. 93, 1499 (1994).

    Article  ADS  Google Scholar 

  20. Y. Ikeda, A. Mitsuda, N. Ietaka, T. Mizushima, Y. Isikawa, and T. Kuwai, J. Magn. Magn. Mater. 310, 62 (2007).

    Article  ADS  Google Scholar 

  21. A. M. Goforth, P. Klavins, J. C. Fettinger, and S. M. Kauzlarich, Inorg. Chem. 47, 11048 (2008).

    Article  Google Scholar 

  22. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  23. R. A. Vargas Hernández, J. Phys. Chem. A 124, 4053 (2020), ar**v: 1903.10678.

    Article  Google Scholar 

  24. G. Kresse, and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  ADS  Google Scholar 

  25. A. R. Allouche, J. Comput. Chem. 32, 174 (2012).

    Article  Google Scholar 

  26. A. Togo, and I. Tanaka, Script. Mater. 108, 1 (2015).

    Article  Google Scholar 

  27. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  ADS  Google Scholar 

  28. J. Klimes, D. R. Bowler, and A. Michaelides, Phys. Rev. B-Condens. Matter Mater. Phys. 83, 1 (2011).

    Article  Google Scholar 

  29. J. Klimes, D. R. Bowler, and A. Michaelides, J. Phys. Condens. Matter 22, 022201 (2010).

    Article  ADS  Google Scholar 

  30. F. Lou, X. Y. Li, J. Y. Ji, H. Y. Yu, J. S. Feng, X. G. Gong, and H. J. **ang, J. Chem. Phys. 154, 114103 (2021).

    Article  ADS  Google Scholar 

  31. K. Hukushima, and K. Nemoto, J. Phys. Soc. Jpn. 65, 1604 (1996), ar**v: cond-mat/9512035.

    Article  ADS  Google Scholar 

  32. L. Zhao, C. Yi, C. T. Wang, Z. Chi, Y. Yin, X. Ma, J. Dai, P. Yang, B. Yue, J. Cheng, F. Hong, J. T. Wang, Y. Han, Y. Shi, and X. Yu, Phys. Rev. Lett. 126, 155701 (2021), ar**v: 2102.00437.

    Article  ADS  Google Scholar 

  33. D. P. Rojas, J. Rodríguez Fernández, J. I. Espeso, and J. C. Gómez Sal, J. Alloys Compd. 502, 275 (2010).

    Article  Google Scholar 

  34. C. Butschkow, E. Reiger, A. Rudolph, S. Geißler, D. Neumaier, M. Soda, D. Schuh, G. Woltersdorf, W. Wegscheider, and D. Weiss, Phys. Rev. B 87, 1 (2013).

    Article  Google Scholar 

  35. H. Wada, T. Sakata, A. Nakamura, A. Mitsuda, M. Shiga, Y. Ikeda, and Y. Bando, J. Phys. Soc. Jpn. 68, 950 (1999).

    Article  ADS  Google Scholar 

  36. V. Yannello, F. Guillou, A. A. Yaroslavtsev, Z. P. Tener, F. Wilhelm, A. N. Yaresko, S. L. Molodtsov, A. Scherz, A. Rogalev, and M. Shatruk, Chem. Eur. J. 25, 5865 (2019).

    Article  Google Scholar 

  37. C. Li, Z. Yu, W. Bi, J. Zhao, M. Y. Hu, J. Zhao, W. Wu, J. Luo, H. Yan, E. E. Alp, and H. Liu, Phys. B: Condens. Matter 10, 1016 (2016).

    Google Scholar 

  38. S. Sakuragi, S. Sasaki, R. Akashi, R. Sakagami, K. Kuroda, C. Bareille, T. Hashimoto, T. Nagashima, Y. Kinoshita, Y. Hirata, M. Shimozawa, S. Asai, T. Yajima, S. Doi, N. Tsujimoto, S. Kunisada, R. Noguchi, K. Kurokawa, N. Azuma, K. Hirata, Y. Yamasaki, H. Nakao, T. K. Kim, C. Cacho, T. Masuda, M. Tokunaga, H. Wadati, K. Okazaki, S. Shin, Y. Kamihara, M. Yamashita, and T. Kondo, ar** Cai, Naitian Liu, Dao-**n Yao & Meng Wang

Authors

Corresponding author

Correspondence to Meng Wang.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11904414, 11904416, 11574404, 11974432, and 12174454), National Key Research and Development Program of China (Grant Nos. 2019YFA0705702, 2018YFA0306001, and 2017YFA0206203), Guangdong Basic and Applied Basic Research Fund (Grant No. 2019A1515011337), Fundamental Research Funds for the Central Universities (Grant No. 18lgpy73), Key-Area Research and Development Program of Guangdong Province (Grant No. 2019B030330001), and Science and Technology Projects in Guangzhou (Grant No. 202102080361).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Chen, C., Hou, Y. et al. Magnetism variation of the compressed antiferromagnetic topological insulator EuSn2As2. Sci. China Phys. Mech. Astron. 64, 118211 (2021). https://doi.org/10.1007/s11433-021-1760-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1760-x

PACS number(s)

Navigation